\(x^2+5x+1=\left(x+5\right)\times\sqrt{x^2+1}\)
Trả lời nhanh lên hộ mình. Mình kiểm tra (T_T)
NHANH MÌNH TICK CHO NHA!!! (^_^)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}x=0\)
\(x.\left(\frac{1}{3}+\frac{2}{5}\right)-\frac{2}{5}=0\)
\(x.\frac{11}{15}=0+\frac{2}{5}=\frac{2}{5}\)
\(x=\frac{2}{5}:\frac{11}{15}=\frac{6}{11}\)
\(2\cdot\left(2x-6\right)+\left(x-1\right)=2\)
\(\Leftrightarrow4x-12+x-1-2=0\)
\(\Leftrightarrow5x-15=0\)
\(\Leftrightarrow5x=15\)
\(\Leftrightarrow x=3\)
a) \(E=|3x-7|+|3x+2|+8\)
\(E=|7-3x|+|3x+2|+8\)
Do : \(|a|\ge a\)
\(\Rightarrow E_{min}\text{=}7-3x+3x+2+8\)
\(\Rightarrow E_{min}\text{=}17\)
Dấu '' = '' xảy ra : \(\Leftrightarrow\dfrac{-2}{3}\le x\le\dfrac{7}{3}\)
\(3\left(x-1\right)-2|x-3|=3x-3-2|x-3|\)
\(+,x\ge3\Rightarrow|x-3|=x-3\Rightarrow3x-3-2|x-3|=3x-3-2x+6\)
\(=x+3\)
\(+,x< 3\Rightarrow3x-3-2|x-3|=3x-3-6+2x=5x-9\)
ĐK:\(x\ge1\)
Bình phương 2 vế ta được
\(2\left(x^2+2x+3\right)^2=25\left(x^3+3x^2+3x+2\right)\)
\(\Leftrightarrow2\left(x^4+4x^2+9+4x^3+12x+6x^2\right)=25\left(x^3+3x^2+3x+2\right)\)
\(\Leftrightarrow2x^4-17x^3-55x^2-51x-32=0\)
\(\Leftrightarrow x^2\left(2x^2-17x-55\right)-51x-32=0\)
\(\Delta=256x^2-2176x-4439\)
\(=\left(16x-68\right)^2-9063\)
Để pt có nghiệm thì \(\Delta\)là số chính phương
\(\Rightarrow\left(16x-68\right)^2-9063=k^2\left(k\in N\right)\)
\(\Leftrightarrow\left(16x-68-k\right)\left(16x-68+k\right)=9063=1007.9=1.9063\)
Mặt khác k,x \(\ge\)0 nên
\(16x-68-k< 16x-68+k\)
Từ đó có 2 TH
*\(\hept{\begin{cases}16x-68-k=1\\16x-68+k=9063\end{cases}\Leftrightarrow}x=\frac{575}{2}\left(tm\right)\)
*\(\hept{\begin{cases}16x-68-k=9\\16x-68+k=1007\end{cases}\Leftrightarrow}x=36\left(tm\right)\)
Vậy.........................
ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ bài này hok phải phương trình nghiệm nguyên nên em nghĩ chắc gì \(\Delta=k^2?!?\)
Em thì dạng này cứ liên hợp làm tới thôi:v Nhưng ko chắc:v
Nhận xét x = -2 không phải là nghiệm, xét x khác -2
ĐK: \(x>-2\)
Bớt 10x + 20= 5(2x + 4) ở cả hai vế
PT \(\Leftrightarrow2x^2-6x-14=5\left(\sqrt{x^3+3x^2+3x+2}-\left(2x+4\right)\right)\)
\(\Leftrightarrow2\left(x^2-3x-7\right)=5.\frac{x^3-x^2-13x-14}{\sqrt{x^3+3x^2+3x+2}+2x+4}\)
\(\Leftrightarrow2\left(x^2-3x-7\right)=\frac{5\left(x+2\right)\left(x^2-3x-7\right)}{\sqrt{x^3+3x^2+3x+2}+2x+4}\)
\(\Leftrightarrow\left(x^2-3x-7\right)\left(2-\frac{5\left(x+2\right)}{\sqrt{x^3+3x^2+3x+2}+2x+4}\right)=0\)
*Giải cái ngoặc to \(\Leftrightarrow2\sqrt{x^3+3x^2+3x+2}-\left(x+2\right)=0\)
\(\Leftrightarrow2\sqrt{\left(x+2\right)\left(x^2+x+1\right)}-\left(x+2\right)=0\)
\(\Leftrightarrow\sqrt{x+2}\left(2\sqrt{\left(x^2+x+1\right)}-1\right)=0\)
\(\Leftrightarrow\left(2\sqrt{\left(x^2+x+1\right)}-1\right)=0\)(vì x > -2 nên \(\sqrt{x+2}>0\))
Ta có: \(VT=2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}-1\ge2\sqrt{\frac{3}{4}}-1>0\)
Do đó cái ngoặc to vô nghiệm.
Còn lại cái ngoặc nhỏ và bí:)
Chắc đúng rồi nhỉ:))
Câu 2:
a: 10km=10000m
10000m dây đồng có cân nặng là:
\(47:5\cdot10000=94000\left(g\right)\)
b: 300g=0,3kg=0,003 tạ
0,003 tạ nặng:
\(2,5:1\cdot0,003=\dfrac{3}{400}\left(kg\right)\)
Câu 1:
a:
\(\left|1-2x\right|>=0\forall x\)
=>\(3\left|1-2x\right|>=0\forall x\)
=>\(3\left|1-2x\right|-5>=-5\forall x\)
=>\(A>=-5\forall x\)
Dấu '=' xảy ra khi 1-2x=0
=>2x=1
=>x=1/2
Vậy: \(A_{Min}=-5\) khi x=1/2
b: \(2x^2>=0\forall x\)
=>\(2x^2+1>=1\forall x\)
=>\(\left(2x^2+1\right)^4>=1^4=1\forall x\)
=>\(\left(2x^2+1\right)^4-3>=1-3=-2\forall x\)
=>B>=-2\(\forall\)x
Dấu '=' xảy ra khi x=0
c: \(\left|x-\dfrac{1}{2}\right|>=0\forall x\)
\(\left(y+2\right)^2>=0\forall y\)
Do đó: \(\left|x-\dfrac{1}{2}\right|+\left(y+2\right)^2>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+2=0\end{matrix}\right.\)
=>x=1/2 và y=-2
ĐK \(x\ge-\frac{1}{2}\)
Đặt như trên... (\(a\ge\sqrt{\frac{1}{2}};b\ge0\)) ta có hệ:
\(\hept{\begin{cases}2a^2b=a+b^3\\2a^2-b^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(b^2+1\right)b=a+b^3\\2a^2=b^2+1\end{cases}}\)
Xét pt trình đầu của hệ \(\Leftrightarrow a=b\). Thay b bởi a ở pt dưới ta được:
\(2a^2-a^2-1=0\Leftrightarrow\orbr{\begin{cases}a=1\left(TM\right)\\a=-\frac{1}{2}\left(KTM\right)\end{cases}}\). Với a = 1 thì ta có:
\(\sqrt{1+x}=1\Leftrightarrow x=0\) (TM)
Vậy...
x2+5x+1=(x+5)\(\sqrt{x^2+1}\)
\(\Leftrightarrow x^2+5x+1=\left(x+5\right)\left(x+1\right)\)
\(\Leftrightarrow x^2+5x+1=x^2+x+5x+5\)
<=> -x=4
<=> x=-4