Tìm dư của các phép chia
\(x^{41}\)cho \(x^2+1\)
\(x^{27}+x^9+x^3+x\)cho\(x^2-1\)
\(x^{99}+x^{55}+x^{11}+x+7\)cho \(x^2+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt : x20 + x11 - x2005 = f(x )
Giả sử , f (x ) = ( x2 - 1)g( x ) + ax + b
*) Để : f( x ) chia hết cho x2 - 1 thì :
f( 1) = a +b
(=) a +b = 1 ( *)
*) Để : f( x ) chia hết cho x2 - 1 thì :
f( - 1) = -a + b
(=) -a + b = - 1( * *)
Từ ( * , **) ta có : 2b = 0 -> b = 0
--> a = 1
Vậy , số dư trong phép chia f( x ) cho x2 -1 là x
\(a,x^{20}+x^{11}-x^{2005}:x^2-1\)
Đặt \(f\left(x\right)=x^{20}+x^{11}-x^{2005}\)
Áp dụng định lí Bê-du ta có:
+)\(f\left(-1\right)=\left(-1\right)^{20}+\left(-1\right)^{11}-\left(-1\right)^{2005}\)
\(=1-1+1=1\)
=>Số dư của đã thức f(x) cho x2-1 là 1(1)
+)\(f\left(1\right)=1^{20}+1^{11}-1^{2005}=1\)
Số dư của đã thức f(x) cho x2-1 là 1(2)
Từ (1) và (2) =>Số dư của đã thức đã cho cho x2-1 là 1
b, Chưa nghĩ ra@@
Khi chia cho đa thức bậc 2 thì dư tối đa là bậc 1, giả sử đó là \(ax+b\)
\(\Rightarrow x^{2019}+x^{2018}+x+2018=\left(x^2-1\right).P\left(x\right)+ax+b\)
Trong đó \(P\left(x\right)\) là đa thức thương (ko cần quan tâm)
Thay lần lượt \(x=-1\) và \(x=1\) vào ta được:
\(\left\{{}\begin{matrix}2017=-a+b\\2021=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=2019\end{matrix}\right.\)
Đa thức dư là \(2x+2019\)
Lời giải:
Vì $x^2-1$ là đa thức bậc 2 nên đa thức dư khi chia $x^{2019}+x^{2018}+x+2018$ cho $x^2-1$ phải có bậc nhỏ hơn 2.
Đặt đa thức dư cần tìm là $ax+b$
Ta có:
\(x^{2019}+x^{2018}+x+2018=Q(x)(x^2-1)+ax+b\) với $Q(x)$ là đa thức thương
Lần lượt thay $x=1,x=-1$ ta có:
\(\left\{\begin{matrix} 2021=a+b\\ 2017=-a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=2\\ b=2019\end{matrix}\right.\)
Vậy đa thức dư là $2x+2019$
(x^99+x^11)+(x^55+x)+7 =x^11(x^88+1)+x(x^54+1)+7 =x^11(x^22+1) (x^66-x^44+x^22-1) + x(x^54+1)+7 = A+7 mà ta có:
a^n+1=(a+1)(a^(n-1)-a^(n-2)+.....-1) (với n là lẻ) vậy a^n+1 chia hết cho a+1 với a lsf x^2,n lần lượt là 11 và 27=>A chia hết cho x^2+1 Xét 7(x^2+1) dư b nếu x=0 thì b=0 x=+ -1 thì b=1 x=+ -2 thì b=2 x>2 thì b=7 đó cũng là số dư của A+7 chia cho x^2+1. và là số dư cần tìm
Cho hoi dap de hoi chi khong duoc noi lung tung day la pham loi trong hoi dap