K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

a) Đặt : x20 + x11 - x2005 = f(x )

Giả sử , f (x ) = ( x2 - 1)g( x ) + ax + b

*) Để : f( x ) chia hết cho x2 - 1 thì :

f( 1) = a +b

(=) a +b = 1 ( *)

*) Để : f( x ) chia hết cho x2 - 1 thì :

f( - 1) = -a + b

(=) -a + b = - 1( * *)

Từ ( * , **) ta có : 2b = 0 -> b = 0

--> a = 1

Vậy , số dư trong phép chia f( x ) cho x2 -1 là x

24 tháng 10 2017

\(a,x^{20}+x^{11}-x^{2005}:x^2-1\)

Đặt \(f\left(x\right)=x^{20}+x^{11}-x^{2005}\)

Áp dụng định lí Bê-du ta có:

+)\(f\left(-1\right)=\left(-1\right)^{20}+\left(-1\right)^{11}-\left(-1\right)^{2005}\)

\(=1-1+1=1\)

=>Số dư của đã thức f(x) cho x2-1 là 1(1)

+)\(f\left(1\right)=1^{20}+1^{11}-1^{2005}=1\)

Số dư của đã thức f(x) cho x2-1 là 1(2)

Từ (1) và (2) =>Số dư của đã thức đã cho cho x2-1 là 1

b, Chưa nghĩ ra@@

NV
20 tháng 6 2019

Khi chia cho đa thức bậc 2 thì dư tối đa là bậc 1, giả sử đó là \(ax+b\)

\(\Rightarrow x^{2019}+x^{2018}+x+2018=\left(x^2-1\right).P\left(x\right)+ax+b\)

Trong đó \(P\left(x\right)\) là đa thức thương (ko cần quan tâm)

Thay lần lượt \(x=-1\)\(x=1\) vào ta được:

\(\left\{{}\begin{matrix}2017=-a+b\\2021=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=2019\end{matrix}\right.\)

Đa thức dư là \(2x+2019\)

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

Lời giải:

Vì $x^2-1$ là đa thức bậc 2 nên đa thức dư khi chia $x^{2019}+x^{2018}+x+2018$ cho $x^2-1$ phải có bậc nhỏ hơn 2.

Đặt đa thức dư cần tìm là $ax+b$

Ta có:

\(x^{2019}+x^{2018}+x+2018=Q(x)(x^2-1)+ax+b\) với $Q(x)$ là đa thức thương

Lần lượt thay $x=1,x=-1$ ta có:

\(\left\{\begin{matrix} 2021=a+b\\ 2017=-a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=2\\ b=2019\end{matrix}\right.\)

Vậy đa thức dư là $2x+2019$

18 tháng 9 2016

(x^99+x^11)+(x^55+x)+7 =x^11(x^88+1)+x(x^54+1)+7 =x^11(x^22+1) (x^66-x^44+x^22-1) + x(x^54+1)+7 = A+7 mà ta có:

 a^n+1=(a+1)(a^(n-1)-a^(n-2)+.....-1) (với n là lẻ) vậy a^n+1 chia hết cho a+1 với a lsf x^2,n lần lượt là 11 và 27=>A chia hết cho x^2+1 Xét 7(x^2+1) dư b nếu x=0 thì b=0 x=+ -1 thì b=1 x=+ -2 thì b=2 x>2 thì b=7 đó cũng là số dư của A+7 chia cho x^2+1. và là số dư cần tìm

14 tháng 9 2017

Tìm số dư của phép chia đa thức,(x^99 + x^55 + x^11 + x + 7) : (x^2 - 1),Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

đúng ko ?

26 tháng 10 2018

Thiên Hương đẹp quá đi mất?

28 tháng 10 2018

 Cho hoi dap de hoi chi khong duoc noi lung tung day la pham loi trong hoi dap