K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

Đặt \(A=\sqrt[3]{54+30\sqrt{3}}+\sqrt[3]{54-30\sqrt{3}}\)

\(=\sqrt[3]{27+27\sqrt{3}+3\sqrt{3}+27}+\sqrt[3]{27-27\sqrt{3}-3\sqrt{3}+27}\)

\(=\sqrt[3]{\left(3+\sqrt{3}\right)^3}+\sqrt[3]{\left(3-\sqrt{3}\right)^3}\)

\(=3+\sqrt{3}+3-\sqrt{3}\)

\(=6\)

Vậy \(A=6\)

17 tháng 8 2016
Cái đề đọc không được
14 tháng 10 2018

a) Đặt \(A=3+\sqrt{3}\)

<=>\(A^3=27+27\sqrt{3}+27+3\sqrt{3}\)

<=>\(A^3=54+30\sqrt{3}\)

<=>\(A=\sqrt[3]{54+30\sqrt{3}}\)

Vậy....

b) mình sửa lại đề nhá:

Tính \(B=\sqrt[3]{54+30\sqrt{3}}+\sqrt[3]{54-30\sqrt{3}}\)

\(B=\sqrt[3]{\left(3+\sqrt{3}\right)^3}+\sqrt[3]{\left(3-\sqrt{3}\right)^3}\)

\(B=3+\sqrt{3}+3-\sqrt{3}=6\)

23 tháng 10 2017

dạy mik cách viết căn trên máy tính đi mik giải cho

11 tháng 9 2021

\(5\sqrt[3]{2}+\sqrt[3]{-16}+\sqrt[3]{54}=5\sqrt[3]{2}-2\sqrt[3]{2}+3\sqrt[3]{2}=6\sqrt[3]{2}\)

\(5\sqrt[3]{2}+\sqrt[3]{-16}+\sqrt[3]{54}\)

\(=5\sqrt[3]{2}-2\sqrt[3]{2}+3\sqrt[3]{2}\)

\(=6\sqrt[3]{2}\)

27 tháng 8 2018

a) \(\frac{x\sqrt[3]{y}+\sqrt[3]{x^2y^2}}{\sqrt[3]{x^2y^2}+y\sqrt[3]{x}}\)

\(=\frac{\sqrt[3]{x^2y}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)}{\sqrt[3]{xy^2}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)}=\sqrt[3]{\frac{x^2y}{xy^2}}=\sqrt[3]{\frac{x}{y}}\)

b) \(\frac{\sqrt[3]{54}-2\sqrt[3]{16}}{\sqrt[3]{54}+2\sqrt[3]{16}}\)

\(=\frac{\sqrt[3]{27.2}-2\sqrt[3]{8.2}}{\sqrt[3]{27.2}+2\sqrt[3]{8.2}}\)

\(=\frac{3\sqrt[3]{2}-4\sqrt[3]{2}}{3\sqrt[3]{2}+4\sqrt[3]{2}}=\frac{-\sqrt[3]{2}}{7\sqrt[3]{2}}=-\frac{1}{7}\)

28 tháng 5 2021

a) (a+1)(ba+1).
b) (x−y)(x+y).

19 tháng 6 2021

\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\left(2+\sqrt{2}\right)\left(\sqrt{2}-1\right)}{2-1}=2\sqrt{2}-2+2-\sqrt{2}=\sqrt{2}\)

\(\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}=-\sqrt{5}\)

\(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{2}\)

\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{\left(a-\sqrt{a}\right)\left(1+\sqrt{a}\right)}{1-a}=\dfrac{a+a\sqrt{a}-\sqrt{a}-a}{1-a}=\dfrac{\sqrt{a}\left(a-1\right)}{1-a}=-\sqrt{a}\)

\(\dfrac{p-2\sqrt{p}}{\sqrt{p}-2}=\dfrac{\sqrt{p}\left(\sqrt{p}-2\right)}{\sqrt{p}-2}=\sqrt{p}\)

a) Ta có: \(M=\dfrac{2}{\sqrt{7}-\sqrt{6}}-\sqrt{28}+\sqrt{54}\)

\(=\dfrac{2\left(\sqrt{7}+\sqrt{6}\right)}{\left(\sqrt{7}-\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}-2\sqrt{7}+3\sqrt{6}\)

\(=2\sqrt{7}+2\sqrt{6}-2\sqrt{7}+3\sqrt{6}\)

\(=5\sqrt{6}\)

b) Ta có: \(N=\left(2-\sqrt{3}\right)\left(\sqrt{26+15\sqrt{3}}\right)-\left(2+\sqrt{3}\right)\sqrt{26-15\sqrt{3}}\)

\(=\dfrac{\left(2-\sqrt{3}\right)\sqrt{52+30\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{52-30\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\left(2-\sqrt{3}\right)\sqrt{27+2\cdot3\sqrt{3}\cdot5+25}-\left(2+\sqrt{3}\right)\sqrt{27-2\cdot3\sqrt{3}\cdot5+25}}{\sqrt{2}}\)

\(=\dfrac{\left(2-\sqrt{3}\right)\sqrt{\left(3\sqrt{3}+5\right)^2}-\left(2+\sqrt{3}\right)\sqrt{\left(3\sqrt{3}-5\right)^2}}{\sqrt{2}}\)

\(=\dfrac{\left(2-\sqrt{3}\right)\left(3\sqrt{3}+5\right)-\left(2+\sqrt{3}\right)\left(3\sqrt{3}-5\right)}{\sqrt{2}}\)

\(=\dfrac{6\sqrt{3}+10-9-5\sqrt{3}-\left(6\sqrt{3}-10+9-5\sqrt{3}\right)}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{2}}\)

\(=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)