K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

Áp dụng dãy tí số bằng nhau ta có: 

\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-z}=\frac{x+y+z}{2x+2y+z+2}\)

=> \(\frac{x+y+z}{2x+2y+z+2}=x+y+z\)

=> \(2x+2y+z+2=1\)(1)

=> \(\hept{\begin{cases}y+z+1=-y-2x\\x+z+1=-x-2y\end{cases}}\)

=> \(\frac{x}{-y-2x}=\frac{y}{-x-2y}=\frac{x+y}{-3x-3y}=-\frac{1}{3}\)

=> \(3x=y+2x\Rightarrow x=y\)

Thế vào (1) => \(z=-1-4x\)

KHi đó ta có:

\(x+y+z=2x+z=-\frac{1}{3}\)

=> \(2x-1-4x=-\frac{1}{3}\)=> \(x=-\frac{1}{3}\)=> y = -1/3 => z =-1-4.(-1/3) =1/3

2 tháng 1 2017

Hay quớ ak! Mơn m nhìu nha ný! <3 <3 <3 (not thả thính =))))

3 tháng 1 2017

chỉ thả tai thui

19 tháng 6 2023

\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)

19 tháng 6 2023

avt ảnh bạn à, vừa handsome vừa học giỏi nx -.-

20 tháng 8 2016

a)  \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)

\(\Rightarrow x+y+z=\frac{1}{2}\)(do 1/(x+y+z)=2)

\(\Rightarrow y+z=\frac{1}{2}-x;z+x=\frac{1}{2}-y;x+y=\frac{1}{2}-z\)

Thay vào lần lượt ta có:

\(\frac{\frac{1}{2}-x+1}{x}=2\)\(\Rightarrow x=\frac{1}{2}\)

\(\frac{\frac{1}{2}-y+2}{y}=2\)\(\Rightarrow y=\frac{5}{6}\)

\(\frac{\frac{1}{2}-z-3}{z}=2\)\(\Rightarrow z=-\frac{5}{6}\)

NV
18 tháng 10 2020

ĐKXĐ: ...

Lấy pt cuối trừ 3 lần pt đầu ta được:

\(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^3+\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^3+\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)^3=\frac{512}{27}\)

Pt (2) tương đương:

\(x+\frac{1}{x}-2+y+\frac{1}{y}-2+z+\frac{1}{z}-2=\frac{64}{9}\)

\(\Leftrightarrow\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2+\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^2+\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)^2=\frac{64}{9}\)

Đặt \(\left(\sqrt{x}-\frac{1}{\sqrt{x}};\sqrt{y}-\frac{1}{\sqrt{y}};\sqrt{z}-\frac{1}{\sqrt{z}}\right)=\left(a;b;c\right)\)

Hệ trở thành:

\(\left\{{}\begin{matrix}a+b+c=\frac{8}{3}\\a^2+b^2+c^2=\frac{64}{9}\\a^3+b^3+c^3=\frac{512}{27}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b+c=\frac{8}{3}\\ab+bc+ca=0\\a^3+b^3+c^3=\frac{512}{27}\end{matrix}\right.\)

Ta có: \(a^3+b^3+c^3-3abc=\frac{512}{27}-3abc\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=\frac{512}{27}-3abc\)

\(\Leftrightarrow\frac{8}{3}.\left(\frac{64}{9}-0\right)=\frac{512}{27}-3abc\)

\(\Rightarrow abc=0\)

\(\Rightarrow\left\{{}\begin{matrix}a+b+c=\frac{8}{3}\\ab+bc+ca=0\\abc=0\end{matrix}\right.\) \(\Leftrightarrow\left(a;b;c\right)=\left(0;0;\frac{8}{3}\right)\) và hoán vị

Hay \(\left(x;y;z\right)=\left(1;1;9\right)\) và hoán vị

17 tháng 10 2018

ta có: \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=\frac{1}{90}.\)

\(\Rightarrow2007.\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)=2007\cdot\frac{1}{90}\)

\(\frac{2007}{x+y}+\frac{2007}{y+z}+\frac{2007}{x+z}=\frac{223}{10}\)

mà x+y+z = 2007

\(\Rightarrow\frac{x+y+z}{x+y}+\frac{x+y+z}{y+z}+\frac{x+y+z}{x+z}=\frac{223}{10}\)

\(1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{y}{x+z}=\frac{223}{10}\)

\(\Rightarrow\frac{z}{x+y}+\frac{x}{y+z}+\frac{y}{x+z}=\frac{223}{10}-3=\frac{193}{10}\)

28 tháng 12 2016

quy đồng cái biểu thức =1 ta có 

(x(z+x)(x+y)+y(y+z)(x+y)+z(y+z)(z+x))/(y+z)(z+x)(x+y)=1 

suy ra x(z+x)(x+y)+y(y+z)(x+y)+z(y+z)(z+x)=(y+z)(z+x)(x+y) 

x(z+x)(x+y)+y(y+z)(x+y)+z(y+z)(z+x)-(y+z)(z+x)(x+y)=0 

x^3+y^3+z^3+xyz=0(bước này bạn tự tính rút gọn nhan) 

xyz=-x^3-y^3-z^3 

quy đồng A ta có (x^2(z+x)(x+y)+y^2(y+z)(x+y)+z^2(y+z)(z+x))/(y+z)(z+x)(x+y)

mik chỉ xét tử thôi nhan cộng lại hết ta có 

x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^3y+xy^3+x^3z+xz^3+y^3z+yz^3

thế xyz=-x^3-y^3-z^3 ta có 

=x^4+y^4+z^4+x(-x^3-y^3-z^3)+y(-x^3-y^3-z^3)+z(-x^3-y^3-z^3)+x^3y+xy^3+x^3z+xz^3+y^3z+yz^3 

rút gọn sẽ bằng 0 

suy ra A=0 

28 tháng 12 2016

có cách khác không bạn cách này mỏi quá!

21 tháng 1 2019

Đặt : \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=M\)

\(\Rightarrow\left(x+y+z\right).M=\frac{1}{672}.2017\)

\(\Rightarrow1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{y}{z+x}=\frac{2016}{672}+\frac{1}{672}\)

\(\Rightarrow3+\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=3+\frac{1}{672}\)

\(\Rightarrow\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{1}{672}\)

21 tháng 1 2019

Nhân cả 2 vế với \(x+y+z\),ta được:

\(\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{1}{672}\cdot2017\)

\(\Rightarrow\frac{x+y+z}{x+y}+\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}=\frac{2017}{672}\)

\(\Rightarrow3+\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{2017}{672}\)

\(\Rightarrow C=\frac{1}{672}\)