\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-z}=x+y+z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)
a) \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)
\(\Rightarrow x+y+z=\frac{1}{2}\)(do 1/(x+y+z)=2)
\(\Rightarrow y+z=\frac{1}{2}-x;z+x=\frac{1}{2}-y;x+y=\frac{1}{2}-z\)
Thay vào lần lượt ta có:
\(\frac{\frac{1}{2}-x+1}{x}=2\)\(\Rightarrow x=\frac{1}{2}\)
\(\frac{\frac{1}{2}-y+2}{y}=2\)\(\Rightarrow y=\frac{5}{6}\)
\(\frac{\frac{1}{2}-z-3}{z}=2\)\(\Rightarrow z=-\frac{5}{6}\)
ĐKXĐ: ...
Lấy pt cuối trừ 3 lần pt đầu ta được:
\(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^3+\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^3+\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)^3=\frac{512}{27}\)
Pt (2) tương đương:
\(x+\frac{1}{x}-2+y+\frac{1}{y}-2+z+\frac{1}{z}-2=\frac{64}{9}\)
\(\Leftrightarrow\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2+\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^2+\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)^2=\frac{64}{9}\)
Đặt \(\left(\sqrt{x}-\frac{1}{\sqrt{x}};\sqrt{y}-\frac{1}{\sqrt{y}};\sqrt{z}-\frac{1}{\sqrt{z}}\right)=\left(a;b;c\right)\)
Hệ trở thành:
\(\left\{{}\begin{matrix}a+b+c=\frac{8}{3}\\a^2+b^2+c^2=\frac{64}{9}\\a^3+b^3+c^3=\frac{512}{27}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b+c=\frac{8}{3}\\ab+bc+ca=0\\a^3+b^3+c^3=\frac{512}{27}\end{matrix}\right.\)
Ta có: \(a^3+b^3+c^3-3abc=\frac{512}{27}-3abc\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=\frac{512}{27}-3abc\)
\(\Leftrightarrow\frac{8}{3}.\left(\frac{64}{9}-0\right)=\frac{512}{27}-3abc\)
\(\Rightarrow abc=0\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+c=\frac{8}{3}\\ab+bc+ca=0\\abc=0\end{matrix}\right.\) \(\Leftrightarrow\left(a;b;c\right)=\left(0;0;\frac{8}{3}\right)\) và hoán vị
Hay \(\left(x;y;z\right)=\left(1;1;9\right)\) và hoán vị
ta có: \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=\frac{1}{90}.\)
\(\Rightarrow2007.\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)=2007\cdot\frac{1}{90}\)
\(\frac{2007}{x+y}+\frac{2007}{y+z}+\frac{2007}{x+z}=\frac{223}{10}\)
mà x+y+z = 2007
\(\Rightarrow\frac{x+y+z}{x+y}+\frac{x+y+z}{y+z}+\frac{x+y+z}{x+z}=\frac{223}{10}\)
\(1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{y}{x+z}=\frac{223}{10}\)
\(\Rightarrow\frac{z}{x+y}+\frac{x}{y+z}+\frac{y}{x+z}=\frac{223}{10}-3=\frac{193}{10}\)
quy đồng cái biểu thức =1 ta có
(x(z+x)(x+y)+y(y+z)(x+y)+z(y+z)(z+x))/(y+z)(z+x)(x+y)=1
suy ra x(z+x)(x+y)+y(y+z)(x+y)+z(y+z)(z+x)=(y+z)(z+x)(x+y)
x(z+x)(x+y)+y(y+z)(x+y)+z(y+z)(z+x)-(y+z)(z+x)(x+y)=0
x^3+y^3+z^3+xyz=0(bước này bạn tự tính rút gọn nhan)
xyz=-x^3-y^3-z^3
quy đồng A ta có (x^2(z+x)(x+y)+y^2(y+z)(x+y)+z^2(y+z)(z+x))/(y+z)(z+x)(x+y)
mik chỉ xét tử thôi nhan cộng lại hết ta có
x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^3y+xy^3+x^3z+xz^3+y^3z+yz^3
thế xyz=-x^3-y^3-z^3 ta có
=x^4+y^4+z^4+x(-x^3-y^3-z^3)+y(-x^3-y^3-z^3)+z(-x^3-y^3-z^3)+x^3y+xy^3+x^3z+xz^3+y^3z+yz^3
rút gọn sẽ bằng 0
suy ra A=0
Đặt : \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=M\)
\(\Rightarrow\left(x+y+z\right).M=\frac{1}{672}.2017\)
\(\Rightarrow1+\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{y}{z+x}=\frac{2016}{672}+\frac{1}{672}\)
\(\Rightarrow3+\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=3+\frac{1}{672}\)
\(\Rightarrow\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{1}{672}\)
Nhân cả 2 vế với \(x+y+z\),ta được:
\(\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{1}{672}\cdot2017\)
\(\Rightarrow\frac{x+y+z}{x+y}+\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}=\frac{2017}{672}\)
\(\Rightarrow3+\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{2017}{672}\)
\(\Rightarrow C=\frac{1}{672}\)
Áp dụng dãy tí số bằng nhau ta có:
\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-z}=\frac{x+y+z}{2x+2y+z+2}\)
=> \(\frac{x+y+z}{2x+2y+z+2}=x+y+z\)
=> \(2x+2y+z+2=1\)(1)
=> \(\hept{\begin{cases}y+z+1=-y-2x\\x+z+1=-x-2y\end{cases}}\)
=> \(\frac{x}{-y-2x}=\frac{y}{-x-2y}=\frac{x+y}{-3x-3y}=-\frac{1}{3}\)
=> \(3x=y+2x\Rightarrow x=y\)
Thế vào (1) => \(z=-1-4x\)
KHi đó ta có:
\(x+y+z=2x+z=-\frac{1}{3}\)
=> \(2x-1-4x=-\frac{1}{3}\)=> \(x=-\frac{1}{3}\)=> y = -1/3 => z =-1-4.(-1/3) =1/3