K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔEDC vuông tại D và ΔEHC vuông tại H có

EC chung

góc DEC=góc HEC

=>ΔEDC=ΔEHC

b: Xét ΔCDK vuông tại D và ΔCHF vuông tại H có

CD=CH

góc DCK=góc HCF

=>ΔCDK=ΔCHF

=>CK=CF

=>ΔCKF cân tại C

a: Xét ΔMED vuông tại E và ΔMIN vuôngtại I có

MD=MN

góc EMD=góc IMN

=>ΔMED=ΔMIN

b: ΔMED=ΔMIN

=>góc MDE=góc MNI=góc MDP

=>DP=NP

a: Xét ΔEDC vuông tại D và ΔEHC vuông tại H có

EC chung

\(\widehat{DEC}=\widehat{HEC}\)

Do đó; ΔEDC=ΔEHC

b: Xét ΔDCK vuông tại D vàΔHCF vuông tại H có 

CD=CH

\(\widehat{DCK}=\widehat{HCF}\)

Do đó; ΔDCK=ΔHCF

Suy ra: CK=CF

15 tháng 5 2022

a, Xét Δ DCE và Δ HCE, có :

EC là cạnh chung

\(\widehat{CDE}=\widehat{CHE}=90^o\)

\(\widehat{DEC}=\widehat{HEC}\) (EC là tia phân giác \(\widehat{DEH}\))

=> Δ DCE = Δ HCE (g.c.g)

=> DC = HC

b, Xét Δ DCK và Δ HCF, có :

DC = HC (cmt)

\(\widehat{DCK}=\widehat{HCF}\) (đối đỉnh)

=> Δ DCK = Δ HCF ( ch - cgn)

=> CK = CF

=> Δ CKF cân tại C

15 tháng 5 2021

a) xét ΔHED và ΔDEF có 

\(\widehat{EHD}=\widehat{EDF}=\)90o

\(\widehat{E} chung\)

=> ΔHED ∼ ΔDEF (gg)

b) Xét ΔDEF có \(\widehat{D}=\)90o

=> DE2+DF2=EF2

=>62+82=EF2

=> EF=10 cm

SΔDEF=\(\dfrac{ED.DF}{2}=\dfrac{DH.EF}{2}\)=> ED.DF=DH.EF => 6.8=DH.10

=> DH =4,8 cm

c) Xét ΔDEH có \(\widehat{EHD}=90\)o

=> HD2.HE2=ED2

=>4.82+HE2=62

=> HE=3.6

ta lại có DI là phân giác 

=> \(\dfrac{EI}{IH}=\dfrac{ED}{HD}\)

=>\(\dfrac{EI}{EH-EI}=\dfrac{6}{4.8} \)=>\(\dfrac{EI}{3.6-EI}=\dfrac{6}{4.8}\)=>EI=2

=> IH=EH-EI=3.6-2=1.6

a) Xét ΔHED vuông tại H và ΔDEF vuông tại D có

\(\widehat{HED}\) chung

Do đó: ΔHED\(\sim\)ΔDEF(g-g)

28 tháng 3 2020

D E F M N H

lưu ý hình ảnh chỉ mang t/c minh họa  ; vui lòng k vẽ theo

xét \(\Delta DHM\)VÀ \(\Delta DHN\)

DH-CẠNH CHUNG

\(\widehat{HDM}=\widehat{HDN}\left(gt\right)\)

\(\widehat{DMH}=\widehat{DNH}=90^o\left(gt\right)\)

=> \(\Delta DHM=\Delta DHN\)

=>HM = HN.

b) xét tam giác DEF cân tại D

=> \(\widehat{DEF}=\widehat{DFE}\)(T/C TAM GIÁC CÂN )

=>\(\widehat{MEH}=\widehat{NFH}\)

XÉT \(\Delta MEH\)VÀ \(\Delta NFH\)

\(\widehat{EMH}=\widehat{FNH}=90^o\left(gt\right)\)

\(\widehat{MEH}=\widehat{NFH}\left(cmt\right)\)

\(HM=HN\left(cmt\right)\)

=> \(\Delta MEH=\Delta NFH\)

D E F M N H

a) Xét 2 tam giác vuông: \(\Delta MDH\)và \(\Delta NDH\)có:

\(\widehat{MDH}=\widehat{NDH}\left(gt\right)\)

\(HD\)cạnh chung

\(\Rightarrow\Delta MDH=\Delta NDH\left(ch-gn\right)\)

\(\Rightarrow HM=HN\)( 2 cạnh tương ứng)

b) Ta có: \(DE=DF\)( vì  tam giác DEF cân tại D )

Hay \(DM+ME=DN+NF\)

mà \(DM=DN\)( 2 cạnh tương ưng của tam giác MDH và tam giác NDH )

\(\Rightarrow ME=NF\)

Xét \(\Delta HME\)và \(\Delta HNF\)có:

\(\widehat{HME}=\widehat{HNF}\left(=90^o\right)\)

\(ME=NF\left(cmt\right)\)

\(\widehat{MEH}=\widehat{NFH}\) ( vì tam giác DEF cân tại D)

\(\Rightarrow\Delta HME=\Delta HNF\left(g-c-g\right)\)

hok tốt!!

Bạn ghi lại đề đi bạn

7 tháng 3 2022

Bài 10. Cho tam giác DEF vuông tại D, có . Tia phân giác của góc F cắt DE tại I. Kẻ IH vuông góc với EF tại H ( ).

a. Chứng minh: DFI = HFI 

b. DFH là tam giác gì? Vì sao?.

c. Qua E kẻ đường thẳng vuông góc với DH tại N. Chứng minh EN // FI.

Bài 11. Cho cân ở A. Trên tia đối của các tia BC và CB lấy thứ tự hai điểm D và E sao cho BD = CE.

a) Chứng minh cân

b) Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của . 

c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE Chứng minh: BH = CK.

d) Chứng minh ba đường thẳng AM, BH, CK đồng quy.  Đây ạ

 

 

 

 

7 tháng 3 2016

D E F H A K

a) xét \(\Delta EDHvà\Delta FDHcó:\)

DF=DE(tam giác DEF cân tại D)

F=E(tam giác DEF cân tại D)

FDH=EDH(gt)

suy ra \(\Delta EDH=\Delta FDH\left(g.c.g\right)\)

suy ra DHE=DHF mà DHA+DHF=180 độ\(\Rightarrow DHA=DHD=\frac{180^o}{2}=90^o\Rightarrow DH_{ }\)__|__EF

7 tháng 3 2016

a/cm 2 tam giác = nhau 

b/ từ cmt thì => đường cao = nhau

c/ cm theo kiểu 2 đường thẳng cùng vuông góc vs 1 đt thì // vs nhau.