K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2019

a) Ta có: \(x^2+2x-y^2+1\)

\(=\left(x^2+2x+1\right)-y^2\)

\(=\left(x+1\right)^2-y^2\)

\(=\left(x+1-y\right)\left(x+1+y\right)\)

b) Ta có: \(x^2+3x-y^2+3y\)

\(=\left(x^2-y^2\right)+\left(3x+3y\right)\)

\(=\left(x-y\right)\left(x+y\right)+3\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+3\right)\)

c) Ta có: \(3\left(x+3\right)-x^2+9\)

\(=3\left(x+3\right)-\left(x^2-9\right)\)

\(=3\left(x+3\right)-\left(x-3\right)\left(x+3\right)\)

\(=\left(x+3\right)\left[3-\left(x-3\right)\right]\)

\(=\left(x+3\right)\left(3-x+3\right)=\left(x+3\right)\left(-x+6\right)\)

\(=\left(x+3\right)\left(6-x\right)\)

25 tháng 10 2019

b, \(x^2+3x-y^2+3y\)

=\(\left(x^2-y^2\right)+\left(3x+3y\right)\)

=(x+y)(x-y)+3(x+y)

=(x+y)(x-y+3)

c,\(3\left(x+3\right)-x^2+9\)

=\(3\left(x+3\right)-\left(x^2-9\right)\)

=3(x+3)-(x+3)(x-3)

=(x+3)(3-x+3)

=(x+3)x

28 tháng 12 2018

a)  x 2 - 1 4                   b)  x 2 - 9 y 2

c)  x 4 - 9                     d)  4 x 2 - 1

25 tháng 10 2021

\(a,=5\left(x-y\right)+a\left(x-y\right)=\left(5+a\right)\left(x-y\right)\\ b,=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)\\ c,=x\left(x+1\right)+a\left(x+1\right)=\left(x+a\right)\left(x+1\right)\\ d,Sửa:x^2y+xy^2-3x-3y=xy\left(x+y\right)-3\left(x+y\right)=\left(xy-3\right)\left(x+y\right)\\ e,=xy\left(x+1\right)-\left(x+1\right)=\left(xy-1\right)\left(x+1\right)\\ f,=x^2-4=\left(x-2\right)\left(x+2\right)\\ g,=\left(x+3\right)^2-y^2=\left(x-y+3\right)\left(x+y+3\right)\\ h,=\left(x+5\right)^2-y^2=\left(x-y+5\right)\left(x+y+5\right)\\ i,=\left(x-4\right)^2-24y^2=\left(x-2\sqrt{6}y-4\right)\left(x+2\sqrt{6}y+4\right)\)

29 tháng 9 2023

a) \(\dfrac{1}{x^3-8}=\dfrac{1}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{2}{2\left(x-2\right)\left(x^2+2x+4\right)}\)

\(\dfrac{3}{4-2x}=\dfrac{-3}{2\left(x-2\right)}=\dfrac{-3\left(x^2+2x+4\right)}{2\left(x-2\right)\left(x^2+2x+4\right)}\)

b) \(\dfrac{x}{x^2-1}=\dfrac{x}{\left(x+1\right)\left(x-1\right)}=\dfrac{x\left(x+1\right)}{\left(x+1\right)^2\left(x-1\right)}\)

\(\dfrac{1}{x^2+2x+1}=\dfrac{1}{\left(x+1\right)^2}=\dfrac{x-1}{\left(x+1\right)^2\left(x-1\right)}\)

c) \(\dfrac{1}{x+2}=\dfrac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)^2}\)

\(\dfrac{1}{x^2-4x+4}=\dfrac{1}{\left(x-2\right)^2}=\dfrac{x+2}{\left(x+2\right)\left(x-2\right)^2}\)

\(\dfrac{5}{2-x}=\dfrac{-5}{x-2}=\dfrac{-5\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^2}\)

d) \(\dfrac{1}{3x+3y}=\dfrac{1}{3\left(x+y\right)}=\dfrac{\left(x-y\right)^2}{3\left(x+y\right)\left(x-y\right)^2}\)

\(\dfrac{2x}{x^2-y^2}=\dfrac{2x}{\left(x+y\right)\left(x-y\right)}=\dfrac{6x\left(x-y\right)}{3\left(x+y\right)\left(x-y\right)^2}\)

\(\dfrac{x^2-xy+y^2}{x^2-2xy+y^2}=\dfrac{x^2-xy+y^2}{\left(x-y\right)^2}=\dfrac{3\left(x^2-xy+y^2\right)\left(x+y\right)}{3\left(x+y\right)\left(x-y\right)^2}=\dfrac{3\left(x^3+y^3\right)}{3\left(x+y\right)\left(x-y\right)^2}\)

29 tháng 9 2023

phần c là x+1 / x2 - 4x +4 mà bn

8 tháng 12 2023

Phân tích đa thức thành nhân tử

1: \(x^2-x-y^2-y\)

\(=\left(x^2-y^2\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-1\right)\)

2: \(x^2-y^2+x-y\)

\(=\left(x^2-y^2\right)+\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y\right)+\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+1\right)\)

3: \(3x-3y+x^2-y^2\)

\(=\left(3x-3y\right)+\left(x^2-y^2\right)\)

\(=3\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(x+y+3\right)\)

4: \(5x-5y+x^2-y^2\)

\(=\left(5x-5y\right)+\left(x^2-y^2\right)\)

\(=5\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left(5+x+y\right)\)

5: \(x^2-5x-y^2-5y\)

\(=\left(x^2-y^2\right)-\left(5x+5y\right)\)

\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-5\right)\)

6: \(x^2-y^2+2x-2y\)

\(=\left(x^2-y^2\right)+\left(2x-2y\right)\)

\(=\left(x-y\right)\left(x+y\right)+2\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+2\right)\)

7: \(x^2-4y^2+x+2y\)

\(=\left(x^2-4y^2\right)+\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y\right)+\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y+1\right)\)

8: \(x^2-y^2-2x-2y\)

\(=\left(x^2-y^2\right)-\left(2x+2y\right)\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

9: \(x^2-4y^2+2x+4y\)

\(=\left(x^2-4y^2\right)+\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)+2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y+2\right)\)

21 tháng 10 2021

a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)

\(=4x^2-4x+5-8x^2+24x-18\)

\(=-4x^2+20x-13\)

e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)

17 tháng 10 2021

a: Ta có: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=4x^2-4x+1-2\left(4x^2-12x+9\right)+4\)

\(=4x^2-4x+5-8x^2+24x-18\)

\(=-4x^2+20x-13\)

b: \(\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(1-2y\right)^2\)

\(=\left(3x+2+1-2y\right)^2\)

\(=\left(3x-2y+3\right)^2\)

8 tháng 9 2023

a) \(x^2-y^2-3x+3y\)

\(=\left(x-y\right)\left(x+y\right)-3\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-3\right)\)

b) \(2x+2y-x^2+y^2\)

\(=2\left(x+y\right)-\left(x^2-y^2\right)\)

\(=2\left(x+y\right)-\left(x-y\right)\left(x+y\right)\)

\(=\left(x+y\right)\left(2-x+y\right)\)

c) \(x^2-16+y^2+2xy\)

\(=x^2+y^2+2xy-16\)

\(=\left(x+y\right)^2-16\)

\(=\left(x+y+4\right)\left(x+y-4\right)\)

8 tháng 9 2023

a) \(x^2-y^2-3x+3y\)

\(=\left(ax+y\right)\left(ax-y\right)-3.\left(x-y\right)\)

b) \(2x+2y-x^2+y^2\)

\(=2\left(x+y\right)-\left(x+y\right)\left(x-y\right)\)

c) \(x^2-16+y^2+2xy\)

\(=\left(x+y\right)\left(x-y\right)+2xy-16\)

29 tháng 10 2023

a) \(\left(2x+3y\right)^2=\left(2x\right)^2+2\cdot2x\cdot3y+\left(3y\right)^2=4x^2+12xy+9y^2\)

b) \(\left(x+\dfrac{1}{4}\right)^2=x^2+2\cdot x\cdot\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2=x^2+\dfrac{1}{2}x+\dfrac{1}{16}\)

c) \(\left(x^2+\dfrac{2}{5}y\right)\left(x^2-\dfrac{2}{5}y\right)=\left(x^2\right)^2-\left(\dfrac{2}{5}y\right)^2=x^4-\dfrac{4}{25}y^2\)

d) \(\left(2x+y^2\right)^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y^2+3\cdot2x\cdot\left(y^2\right)^2+\left(y^2\right)^3=8x^3+12x^2y^2+6xy^4+y^6\)

e) \(\left(3x^2-2y\right)^2=\left(3x^2\right)^2-2\cdot3x^2\cdot2y+\left(2y\right)^2=9x^4-12x^2y+4y^2\)

f) \(\left(x+4\right)\left(x^2-4x+16\right)=x^3+4^3=x^3+64\)

g) \(\left(x^2-\dfrac{1}{3}\right)\cdot\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3=x^6-\dfrac{1}{27}\)