Cho tam giác ABC vuông tại A. Biết \(\frac{sinB}{sinC}=\frac{4}{5}\) và \(BC=2\sqrt{41cm}\) . Tính AB và AC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha thông cảm !
Ta có : \(\sin\left(C\right)=\cos\left(B\right)\)(hai góc B và góc C phụ nhau)
Ta có : \(\frac{\sin\left(B\right)}{\sin\left(C\right)}=\frac{4}{5}\)(giả thiết)
\(\Leftrightarrow\frac{\sin\left(B\right)}{\cos\left(B\right)}=\frac{4}{5}\)
Mà ta có : \(\tan\left(B\right)=\frac{\sin\left(B\right)}{\cos\left(B\right)}\) và \(\tan\left(B\right)=\frac{AC}{AB}\)
\(\Leftrightarrow\tan\left(B\right)=\frac{4}{5}\)
\(\Leftrightarrow\frac{AC}{AB}=\frac{4}{5}\)
\(\Leftrightarrow\left(\frac{AC}{AB}\right)^2=\left(\frac{4}{5}\right)^2\)
\(\Leftrightarrow\frac{AC^2}{AB^2}=\frac{16}{25}\)
\(\Leftrightarrow\frac{AC^2}{16}=\frac{AB^2}{25}\)
Theo đ/l Py-ta-go ta có :
\(AB^2+AC^2=BC^2\)
Hay:\(AB^2+AC^2=\left(2\sqrt{41}\right)^2\)
\(\Leftrightarrow AB^2+AC^2=164\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{AC^2}{16}=\frac{AB^2}{25}=\frac{AC^2+AB^2}{41}=\frac{164}{41}\)
\(\Leftrightarrow AC=\sqrt{\frac{164\cdot16}{41}}\)
\(\Leftrightarrow AC=8\)
\(\Leftrightarrow AB=\sqrt{\frac{164\cdot25}{41}}\)
\(\Leftrightarrow AB=10\)
Vậy AB = 10 và AC = 8
(chúc bạn học tốt )
\(\Delta ABC\)vuông tại A có \(sinB=\frac{\sqrt{3}}{2}\Rightarrow\widehat{B}=60^0\)
\(\Rightarrow\widehat{C}=30^0\)
Lúc đó \(\Delta ABC\)là nửa tam giác đều
\(\Rightarrow AB=\frac{1}{2}BC\Rightarrow BC=2AB=2\left(cm\right)\)
Áp dụng định lý Py-ta-go vào \(\Delta ABC\)vuông tại A, được:
\(AC^2=BC^2-AB^2=2^2-1^2=3\)
\(\Rightarrow AC=\sqrt{3}\left(cm\right)\)
Áp dụng ht lượng trong tam giác vuông có :
\(sinB=\frac{AC}{BC}\Leftrightarrow\frac{\sqrt{3}}{2}=\frac{AC}{BC}\Leftrightarrow AC=\frac{BC\sqrt{3}}{2}\)
Áp dụng đinh lí Py-ta- go vào tam giác vuông ABC có :
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow1+\left(\frac{\sqrt{3}BC}{2}\right)^2=BC^2\)
\(\Leftrightarrow1+\frac{3BC^2}{4}-BC^2=0\)
\(\Leftrightarrow1=\frac{BC^2}{4}\Leftrightarrow BC^2=4\Rightarrow BC=2\left(cm\right)\)
\(\Rightarrow AC=\sqrt{3}\left(cm\right)\)
Chúc bạn học tốt !!!
a) Áp dụng đlí Py - ta - go cho tam giác HAB ( ^H =90^o )
Ta có : \(AB^2=AH^2+BH^2\)
\(13^2=AH^2+5^2\)
\(AH^2=13^2-5^2\)
\(\Rightarrow AH=\sqrt{13^2-5^2}\)
\(\sin B=\frac{AH}{AB}=\frac{\sqrt{13^2-5^2}}{13}\approx0,923\)
Áp dụng hệ thức lượng cho tam giác ABC( ^A = 90^o ) , đường cao AH , ta có :
\(AH^2=BH.HC\Rightarrow HC=\frac{AH^2}{BH}=\frac{12^2}{5}=28,8\)
=> BC = 5 + 28,8 = 33,8
\(\sin C=\frac{AB}{BC}=\frac{13}{33,8}\approx0,384\)
Vậy : \(\sin B\approx0,923\)
\(\sin C\approx0,384\)
a: AH=căn 13^2-5^2=12
Xét ΔAHB vuông tại H có
sin B=AH/AB=12/13=cos C
cos B=sin C=BH/AB=5/13
tan B=cot C=AH/BH=12/5
cot B=tan C=BH/AH=5/12
b: AH=căn 3*4=2*căn 3(cm)
BC=3+4=7(cm)
AB=căn 3*7=căn 21(cm)
AC=căn 4*7=2*căn 7(cm)
Xét ΔABC vuông tại A có
sin B=cos C=AC/BC=2*căn 7/7
cos B=sin C=AB/BC=căn 21/7
tan B=cot C=2*căn 7/căn 21=2/căn 3
cot B=tan C=căn 21/2*căn 7=căn 3/2
Ta có AB^2+AC^2=10^2+24^2=676
BC^2=26^2=676
=> Tam Giác ABC vuông tại A(đpcm)
b, \(\sin B=\frac{AC}{BC}=\frac{24}{26}=\frac{12}{13}\)
\(\sin C=\frac{AB}{BC}=\frac{10}{26}=\frac{5}{13}\)
c,Áp dụng hệ thức AB.AC=AH.BC
=> AH=AB.AC/BC=10.24/26=9,2
\(AB^2=BH.BC\)\(\Leftrightarrow10^2=BH.26\)\(\Rightarrow BH\approx3,8\)
\(\Rightarrow CH=22,2\)
a. Ta có: AB2 + AC2 = 212 + 282 = 1225
BC2 = 352 = 1225
=> BC2 = AB2 + AC2
=> Tam giác ABC là tam giác vuông (Định lý Pytago đảo)
Diện tích tam giác ABC
\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.21.28=294\left(cm^2\right)\)
b. \(sinB=\frac{AC}{BC}=\frac{28}{35}=\frac{4}{5}\)
\(sinC=\frac{AB}{BC}=\frac{21}{35}=\frac{3}{5}\)
c. Ta có: \(\frac{BD}{DC}=\frac{AB}{AC}=\frac{21}{28}=\frac{3}{4}\)\(\)
=> 4BD = 3DC
<=> 4BD = 3(BC - BD)
<=> 7BD = 3BC
<=> 7BD = 3 . 35
=> BD = 15 (cm)
=> DC = 20 (cm)