K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 10 2019

Đề bài có vấn đề nho nhỏ, thay điểm rơi vào thì vế phải thừa bình phương trong ngoặc

Áp dụng Holder:

\(\left(a^2+\frac{1}{b^2}\right)\left(4+\frac{1}{4}\right)\left(4+\frac{1}{4}\right)\ge\left(\sqrt[3]{16a^2}+\sqrt[3]{\frac{1}{16b^2}}\right)^3\)

\(\Rightarrow\sqrt[3]{17^2\left(a^2+\frac{1}{b^2}\right)}\ge4\sqrt[3]{4a^2}+\frac{1}{\sqrt[3]{b^2}}\)

\(\Rightarrow P=\sqrt[3]{17^2}.S\ge4\sqrt[3]{4}\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}\right)+\frac{1}{\sqrt[3]{a^2}}+\frac{1}{\sqrt[3]{b^2}}+\frac{1}{\sqrt[3]{c^2}}\)

\(P=\frac{15}{\sqrt[3]{16}}\sum\sqrt[3]{a^2}+\sum\left(\sqrt[3]{\frac{a^2}{16}}+\frac{1}{\sqrt[3]{a^2}}\right)\)

Ta có: \(3\sqrt[3]{a^2}+\sqrt[3]{4}\ge4\sqrt[12]{4a^6}=4\sqrt[6]{2}.\sqrt{a}\)

Tương tự và cộng lại:

\(\Rightarrow\sum\sqrt[3]{a^2}\ge\frac{4\sqrt[6]{2}\sum\sqrt{a}-3\sqrt[3]{4}}{3}\ge3\sqrt[3]{4}\)

\(\sum\left(\sqrt[3]{\frac{a^2}{16}}+\frac{1}{\sqrt[3]{a^2}}\right)\ge6\sqrt[6]{\frac{1}{16}}=\frac{6}{\sqrt[3]{4}}\)

\(\Rightarrow P\ge\frac{15}{\sqrt[3]{16}}.3\sqrt[3]{4}+\frac{6}{\sqrt[3]{4}}=\frac{51}{\sqrt[3]{4}}=3.\sqrt[3]{\frac{17^3}{4}}\)

\(\Rightarrow S\ge3\sqrt[3]{\frac{17^3}{4}}:\sqrt[3]{17^2}=3\sqrt[3]{\frac{17}{4}}\)

Dấu "=" xảy ra khi \(a=b=c=2\)

Bài toán nhạt nhẽo, chẳng có gì ngoài tính trâu, lần sau xin né :(

20 tháng 10 2019

a có chuyên đề về các bđt không ạ

1. a) \(\left\{{}\begin{matrix}x,y,z0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\) b) \(\left\{{}\begin{matrix}x,y,z0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\) c) \(x,y,z0.\) Min...
Đọc tiếp

1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\)

b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)

c) \(x,y,z>0.\) Min \(P=\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}+\sqrt{\frac{y^3}{y^3+\left(z+x\right)^3}}+\sqrt{\frac{z^3}{z^3+\left(x+y\right)^3}}\)

d) \(a,b,c>0;a^2+b^2+c^2+abc=4.Cmr:2a+b+c\le\frac{9}{2}\)

e) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). Cmr: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\ge\frac{3}{2}\)

f) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=4\end{matrix}\right.\) Cmr: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\)

g) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=2\end{matrix}\right.\) Max : \(Q=\frac{a+1}{a^2+2a+2}+\frac{b+1}{b^2+2b+2}+\frac{c+1}{c^2+2c+2}\)

3
26 tháng 4 2020

Câu 1 chuyên phan bội châu

câu c hà nội

câu g khoa học tự nhiên

câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ

câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)

Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !

25 tháng 4 2020

Câu c quen thuộc, chém trước:

Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)

Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)

Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)

\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)

Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)

\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)

Done.

10 tháng 8 2017

Ta có BĐT \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)

Lợi dụng BĐT Cauchy-Schwarz tao cso:

\(VT^2=\left(\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\right)^2\)

\(\le\left(1+1+1\right)\left(a+b+c+9\right)\)

\(\le3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+9\right)\)

Đặt \(t=a^2+b^2+c^2\left(t\ge3\right)\) thì cần chứng minh:

\(3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+9\right)\le4\left(a^2+b^2+c^2\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2+9\right)\le4\left(a^2+b^2+c^2\right)^2\)

\(\Leftrightarrow3\left(t+9\right)\le4t^2\Leftrightarrow-\left(t-3\right)\left(4t+9\right)\le0\) (Đúng)

10 tháng 8 2017

Ta có BĐT \(3\le ab+bc+ca\le a^2+b^2+c^2\)

Và BĐT: \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)

\(\le\sqrt{9}=3\le a^2+b^2+c^2\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\right)^2\)

\(\le\left(1+1+1\right)\left(a+b+c+9\right)\)

\(\le\left(a^2+b^2+c^2\right)\left[a^2+b^2+c^2+3\left(a^2+b^2+c^2\right)\right]\)

\(=4\left(a^2+b^2+c^2\right)=VP^2\)

Xảy ra khi \(a=b=c=1\)

3 tháng 12 2019

Ai phát hiện sai đề thì sửa và làm giúp mk hộ với, cảm ơn :) (chỉ cần làm tóm tắt thôi)

NV
18 tháng 10 2019

Cho dễ nhìn thì \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\)

\(x+y+z=3\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=9\)

\(\Rightarrow xy+yz+zx=2\)

\(VT=\sum\frac{x}{x^2+2}=\sum\frac{x}{x^2+xy+yz+zx}=\sum\frac{x}{\left(x+y\right)\left(x+z\right)}\)

\(=\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{4}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(VP=\frac{4}{\sqrt{\left(x+y\right)\left(x+z\right)\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(z+x\right)}}=\frac{4}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=VT\) (đpcm)

NV
11 tháng 2 2020

Mới nghĩ ra 3 câu:

a/ \(\frac{ab}{\sqrt{\left(1-c\right)^2\left(1+c\right)}}=\frac{ab}{\sqrt{\left(a+b\right)^2\left(1+c\right)}}\le\frac{ab}{2\sqrt{ab\left(1+c\right)}}=\frac{1}{2}\sqrt{\frac{ab}{1+c}}\)

\(\sum\sqrt{\frac{ab}{1+c}}\le\sqrt{2\sum\frac{ab}{1+c}}\)

\(\sum\frac{ab}{1+c}=\sum\frac{ab}{a+c+b+c}\le\frac{1}{4}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{4}\)

c/ \(ab+bc+ca=2abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\Rightarrow x+y+z=2\)

\(VT=\sum\frac{x^3}{\left(2-x\right)^2}\)

Ta có đánh giá: \(\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\) \(\forall x\in\left(0;2\right)\)

\(\Leftrightarrow2x^3\ge\left(2x-1\right)\left(x^2-4x+4\right)\)

\(\Leftrightarrow9x^2-12x+4\ge0\Leftrightarrow\left(3x-2\right)^2\ge0\)

d/ Ta có đánh giá: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)

11 tháng 2 2020

Akai Haruma, Nguyễn Ngọc Lộc , @tth_new, @Băng Băng 2k6, @Trần Thanh Phương, @Nguyễn Việt Lâm

Mn giúp e vs ạ! Thanks!

1. Tìm tất cả các số tự nhiên n thỏa mãn 2n+1,3n+1 là các số chính phương và 2n+9 là số nguyên tố 2. Tìm tất cả các cặp số nguyên dương (m,n) để \(2^m\cdot5^n+25\) là số chính phương 3. a) cho a,b,c thỏa mãn \(2\left(a^2+ab+b^2\right)=3\left(3-c^2\right)\). Tìm max, min \(P=a+b+c\) b) \(\left\{{}\begin{matrix}a,b,c0\\a+b+c=1\end{matrix}\right.\). Cmr: \(6\left(ab+bc+ca\right)+a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\le2\) c)...
Đọc tiếp

1. Tìm tất cả các số tự nhiên n thỏa mãn 2n+1,3n+1 là các số chính phương và 2n+9 là số nguyên tố

2. Tìm tất cả các cặp số nguyên dương (m,n) để \(2^m\cdot5^n+25\) là số chính phương

3. a) cho a,b,c thỏa mãn \(2\left(a^2+ab+b^2\right)=3\left(3-c^2\right)\). Tìm max, min \(P=a+b+c\)

b) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=1\end{matrix}\right.\). Cmr: \(6\left(ab+bc+ca\right)+a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\le2\)

c) \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z=3\end{matrix}\right.\). Tìm min \(P=\frac{1}{2xy^2+1}+\frac{1}{2yz^2+1}+\frac{1}{2zx^2+1}\)

d) \(\left\{{}\begin{matrix}a,b,c\ge0\\a+b+c=3\end{matrix}\right.\). Tìm max \(P=a\sqrt[3]{b^3+1}+b\sqrt[3]{c^3+1}+c\sqrt[3]{a^3+1}\)

e) \(\left\{{}\begin{matrix}-1\le a,b,c\le1\\0\le x,y,z\le1\end{matrix}\right.\). Max \(P=\left(\frac{1-a}{1-bz}\right)\left(\frac{1-b}{1-cx}\right)\left(\frac{1-c}{1-ay}\right)\)

f) \(\left\{{}\begin{matrix}a,b>0\\a+2b\le3\end{matrix}\right.\). Max \(P=\frac{1}{\sqrt{a+3}}+\frac{1}{\sqrt{b+3}}\)

g) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=x+y+z+2\end{matrix}\right.\). Max \(P=\frac{1}{\sqrt{x^2+2}}+\frac{1}{\sqrt{y^2+2}}+\frac{1}{\sqrt{z^2+2}}\)

h) \(a,b,c>0\). Tìm min \(P=\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(a+c\right)^2}+2\sqrt{a^2+bc}\)

3
11 tháng 12 2019

3 g) \(xyz=x+y+z+2\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=\Sigma_{cyc}\left(x+1\right)\left(y+1\right)\)

\(\Rightarrow\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\) .Đặt \(\frac{1}{x+1}=a;\frac{1}{y+1}=b;\frac{1}{z+1}=c\Rightarrow x=\frac{1-a}{a}=\frac{b+c}{a};y=\frac{c+a}{b};z=\frac{a+b}{c}\) vì a + b + c = 1.

Khi đó \(P=\Sigma_{cyc}\frac{1}{\sqrt{\frac{\left(b+c\right)^2}{a^2}+2}}=\Sigma_{cyc}\frac{a}{\sqrt{2a^2+\left(b+c\right)^2}}\)

\(=\sqrt{\frac{2}{9}+\frac{4}{9}}.\Sigma_{cyc}\frac{a}{\sqrt{\left[\left(\sqrt{\frac{2}{9}}\right)^2+\left(\sqrt{\frac{4}{9}}\right)^2\right]\left[2a^2+\left(b+c\right)^2\right]}}\)

\(\le\sqrt{\frac{2}{3}}\Sigma_{cyc}\frac{a}{\sqrt{\left[\frac{2}{3}a+\frac{2}{3}b+\frac{2}{3}c\right]^2}}=\frac{\sqrt{6}}{2}\left(a+b+c\right)=\frac{\sqrt{6}}{2}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=2\)

11 tháng 12 2019

3c) Nhìn quen quen, chả biết có lời giải ở đâu hay chưa nhưng vẫn làm:D (Em ko quan tâm nha!)

\(P=3-\Sigma_{cyc}\frac{2xy^2}{xy^2+xy^2+1}\ge3-\Sigma_{cyc}\frac{2xy^2}{3\sqrt[3]{\left(xy^2\right)^2}}=3-\frac{2}{3}\Sigma_{cyc}\sqrt[3]{\left(xy^2\right)}\)

\(\ge3-\frac{2}{3}\Sigma_{cyc}\frac{x+y+y}{3}=3-\frac{2}{3}\left(x+y+z\right)=3-2=1\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

7 tháng 9 2019

Bài 2:

a)Ta có: \({\left( {x + 2y} \right)^2} \le \left( {1 + 1} \right)\left( {{x^2} + 4{y^2}} \right) \Rightarrow \dfrac{{\left( {{x^2} + 4{y^2}} \right)}}{2} \ge \sqrt {\dfrac{{{{\left( {x + 2y} \right)}^2}}}{4}} \Leftrightarrow \dfrac{{\left( {{x^2} + 4{y^2}} \right)}}{2} \ge \dfrac{{\left| {x + 2y} \right|}}{2} \)Mặt khác ta cũng có:

\( \dfrac{{{x^2} + 2xy + 4{y^2}}}{3} = \dfrac{{3{{\left( {x + 2y} \right)}^2} + {{\left( {x - 2y} \right)}^2}}}{{12}} \ge \dfrac{{{{\left( {x + 2y} \right)}^2}}}{4}\\ \Rightarrow \sqrt {\dfrac{{{x^2} + 2xy + 4{y^2}}}{3}} \ge \dfrac{{\left| {x + 2y} \right|}}{2} \)

Từ đó suy ra: \(\sqrt {\dfrac{{{x^2} + 4{y^2}}}{2}} + \sqrt {\dfrac{{{x^2} + 2xy + 4{y^2}}}{3}} \ge \left| {x + 2y} \right| \ge x + 2y \)

Dấu bằng xảy ra khi và chỉ khi \(x=2y\ge0\)

Thay vào phương trình còn lại ta thu được:

\({x^4} - {x^3} + 3{x^2} - 2x - 1 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {{x^3} + 3x + 1} \right) = 0 \Leftrightarrow x = 1 \Rightarrow y = \dfrac{1}{2} \)

Vậy nghiệm của hệ phương trình là: \(\left( {1;\dfrac{1}{2}} \right) \)

\(\boxed{Nguyễn Thành Trương}\)

7 tháng 9 2019

Bài 1: a liên hợp là ra mà nhỉ?

a) ĐK: \(x>-3\)

Mặt khác \(PT\Leftrightarrow\sqrt{\frac{1}{x+3}}-2+\sqrt{\frac{5}{x+4}}-2=0\)

\(\Leftrightarrow\frac{\frac{1}{x+3}-4}{\sqrt{\frac{1}{x+3}}+2}+\frac{\frac{5}{x+4}-4}{\sqrt{\frac{5}{x+4}}+2}=0\)

\(\Leftrightarrow\frac{-\left(x+\frac{11}{4}\right)}{\left(x+3\right)\left(\sqrt{\frac{1}{x+3}}+2\right)}+\frac{-\left(x+\frac{11}{4}\right)}{\left(x+4\right)\left(\sqrt{\frac{5}{x+4}}+2\right)}=0\) (quy đồng cái tử lên thôi)

\(\Leftrightarrow\left(x+\frac{11}{4}\right)\left[\frac{-1}{\left(x+3\right)\left(\sqrt{\frac{1}{x+3}}+2\right)}+\frac{-1}{\left(x+4\right)\left(\sqrt{\frac{5}{x+4}}+2\right)}\right]=0\)

Cái ngoặc to nhìn liếc qua cũng thấy nó < 0.

Do đó \(x=-\frac{11}{4}\)

P/s: Về cơ bản hướng làm là vậy, khi là sẽ có thể có những sai sót, do em bị hư máy tính cầm tay:v. Đang rất GP đây này@@

\(\text{~tth~}\)

19 tháng 1 2020

cho {a,b,c>0a+b+c=abc{a,b,c>0a+b+c=abc\left\{{}\begin{matrix}a,b,c>0\\a+b+c=abc\end{matrix}\right..CMR: ba2+cb2+ac2+3≥(1a+1b+1c)2+√3ba2+cb2+ac2+3≥(1a+1b+1c)2+3\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}+3\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+\sqrt{3}

7 tháng 1 2020

cho {a,b,c>0a+b+c=abc{a,b,c>0a+b+c=abc\left\{{}\begin{matrix}a,b,c>0\\a+b+c=abc\end{matrix}\right..CMR: ba2+cb2+ac2+3≥(1a+1b+1c)2+√3ba2+cb2+ac2+3≥(1a+1b+1c)2+3\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}+3\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+\sqrt{3}

AH
Akai Haruma
Giáo viên
6 tháng 10 2019

Bài 1a:

Ta thấy vế trái là số tự nhiên với mọi $x,y\in\mathbb{N}^*$. Do đó $\sqrt{9x^2+16x+32}\in\mathbb{N}^*$

Điều này xảy ra khi \(9x^2+16x+32\) là số chính phương.

Đặt \(9x^2+16x+32=t^2(t\in\mathbb{N}^*)\)

\(\Leftrightarrow 81x^2+144x+288=9t^2\)

\(\Leftrightarrow (9x+8)^2+224=(3t)^2\Leftrightarrow (3t-9x-8)(3t+9x+8)=224\)

Hiển nhiên $3t+9x+8>0; 3t+9x+8>3t-9x-8$ với mọi $x,t\in\mathbb{N}^*$ và $3t+9x+8; 3t-9x-8$ cùng tính chẵn lẻ.

Do đó \((3t+9x+8; 3t-9x-8)=(16;14); (28;8); (56;4); (112;2)\)

Thử các TH trên ta thu được $x=2$ là kết quả duy nhất thỏa mãn

Thay vào PT ban đầu suy ra $y=\frac{-7}{4}$ (vô lý)

Do đó không tồn tại $x,y$ thỏa mãn.

AH
Akai Haruma
Giáo viên
6 tháng 10 2019

Bài 1b:

ĐKXĐ: \(x\geq \frac{-1}{3}\)

PT \(\Leftrightarrow 4x^3+5x^2+3x+1-\sqrt{3x+1}=0\)

\(\Leftrightarrow 4x^3+5x^2+3x-\frac{3x}{\sqrt{3x+1}+1}=0\)

\(\Leftrightarrow x\left(4x^2+5x+3-\frac{3}{\sqrt{3x+1}+1}\right)=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ 4x^2+5x+3-\frac{3}{\sqrt{3x+1}+1}=0(*)\end{matrix}\right.\)

Xét $(*)$

\(\Leftrightarrow 4x^2+x+4x+1+2-\frac{3}{\sqrt{3x+1}+1}=0\)

\(\Leftrightarrow x(4x+1)+(4x+1)+\frac{2\sqrt{3x+1}-1}{\sqrt{3x+1}+1}=0\)

\(\Leftrightarrow (4x+1)(x+1)+\frac{3(4x+1)}{(\sqrt{3x+1}+1)(2\sqrt{3x+1}+1)}=0\)

\(\Leftrightarrow (4x+1)\left[(x+1)+\frac{3}{(\sqrt{3x+1}+1)(2\sqrt{3x+1}+1)}\right]=0\)

Với mọi $x\geq \frac{-1}{3}$ dễ thấy biểu thức trong ngoặc vuông luôn dương. Do đó $4x+1=0\Rightarrow x=\frac{-1}{4}$ (thử lại thấy t/m)

Vậy \(x=0\) hoặc \(x=-\frac{1}{4}\)