Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mới nghĩ ra 3 câu:
a/ \(\frac{ab}{\sqrt{\left(1-c\right)^2\left(1+c\right)}}=\frac{ab}{\sqrt{\left(a+b\right)^2\left(1+c\right)}}\le\frac{ab}{2\sqrt{ab\left(1+c\right)}}=\frac{1}{2}\sqrt{\frac{ab}{1+c}}\)
\(\sum\sqrt{\frac{ab}{1+c}}\le\sqrt{2\sum\frac{ab}{1+c}}\)
\(\sum\frac{ab}{1+c}=\sum\frac{ab}{a+c+b+c}\le\frac{1}{4}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{4}\)
c/ \(ab+bc+ca=2abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\Rightarrow x+y+z=2\)
\(VT=\sum\frac{x^3}{\left(2-x\right)^2}\)
Ta có đánh giá: \(\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\) \(\forall x\in\left(0;2\right)\)
\(\Leftrightarrow2x^3\ge\left(2x-1\right)\left(x^2-4x+4\right)\)
\(\Leftrightarrow9x^2-12x+4\ge0\Leftrightarrow\left(3x-2\right)^2\ge0\)
d/ Ta có đánh giá: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)
Akai Haruma, Nguyễn Ngọc Lộc , @tth_new, @Băng Băng 2k6, @Trần Thanh Phương, @Nguyễn Việt Lâm
Mn giúp e vs ạ! Thanks!
Câu 1 chuyên phan bội châu
câu c hà nội
câu g khoa học tự nhiên
câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ
câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)
Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !
Câu c quen thuộc, chém trước:
Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)
Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)
Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)
\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)
Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)
\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)
Done.
\(A=\frac{a}{ab+c\left(a+b+c\right)}+\frac{b}{bc+a\left(a+b+c\right)}+\frac{c}{ca+b\left(a+b+c\right)}\)
\(=\frac{a}{\left(b+c\right)\left(a+c\right)}+\frac{b}{\left(a+b\right)\left(a+c\right)}+\frac{c}{\left(a+b\right)\left(c+b\right)}\)
Áp dụng bđt AM-GM ta có
\(A=\frac{a\left(a+b\right)+b\left(b+c\right)+c\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\ge27.\frac{a^2+b^2+c^2+ab+bc+ca}{8\left(a+b+c\right)^3}\)\(=\frac{a^2+b^2+c^2+ab+bc+ca}{8}\)
\(=\frac{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}{8}\)\(\ge\frac{9-\frac{\left(a+b+c\right)^2}{3}}{8}=\frac{9-3}{8}=\frac{3}{4}\)
Dấu "=" xảy ra khi a=b=c=1
a/ Một cách đơn giản hơn:
\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
\(P=\frac{x-\frac{1}{2}+y-\frac{1}{2}}{y^2}+\frac{y-\frac{1}{2}+z-\frac{1}{2}}{z^2}+\frac{z-\frac{1}{2}+x-\frac{1}{2}}{x^2}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(P=\left(x-\frac{1}{2}\right)\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(y-\frac{1}{2}\right)\left(\frac{1}{y^2}+\frac{1}{z^2}\right)+\left(z-\frac{1}{2}\right)\left(\frac{1}{x^2}+\frac{1}{z^2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(P\ge\frac{2}{xy}\left(x-\frac{1}{2}\right)+\frac{2}{yz}\left(y-\frac{1}{2}\right)+\frac{2}{zx}\left(z-\frac{1}{2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(P\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-1\)
\(P\ge\sqrt{3\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}-1=\sqrt{3}-1\)
\(P_{min}=\sqrt{3}-1\) khi \(x=y=z=\sqrt{3}\)
Câu 1: \(P=\sum\frac{1}{\left(1+\frac{1}{x}\right)^2}\) đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow abc=1\)
Nó chính là dòng 5 trở đi của bài 4 này, ko làm lại nữa nhé:
Câu hỏi của bach nhac lam - Toán lớp 9 | Học trực tuyến
Câu 2:
\(\frac{a^3}{\left(a^2+b^2+a^2\right)\left(a^2+a^2+c^2\right)}\le\frac{a^3}{\left(a^2+ab+ac\right)^2}=\frac{a}{\left(a+b+c\right)^2}\)
Tương tự, cộng lại và rút gọn sẽ có đpcm
Vũ Minh Tuấn, Băng Băng 2k6, Phạm Lan Hương, Pumpkin Night, No choice teen, HISINOMA KINIMADO,
tth, Nguyễn Lê Phước Thịnh, Chu Tuấn Minh, Lê Thị Hồng Vân, @Trần Thanh Phương, @Nguyễn Việt Lâm,
@Akai Haruma
giúp e vs ạ! thanks trước
2a) Có cách này nhưng ko chắc!
\(A\ge\frac{4x^2}{y^2+z^2}+\frac{y^2+z^2}{x^2}=\frac{3x^2}{y^2+z^2}+\left(\frac{x^2}{y^2+z^2}+\frac{y^2+z^2}{x^2}\right)\)
\(\ge\frac{3\left(y^2+z^2\right)}{y^2+z^2}+2\sqrt{\frac{x^2}{y^2+z^2}.\frac{y^2+z^2}{x^2}}=3+2=5\)
Đẳng thức xảy ra khi x2 = y2 + z2????
tth, ?Amanda?, @Nk>↑@, buithianhtho, Phạm Hoàng Lê Nguyên,
Akai Haruma, Aki Tsuki, @Nguyễn Việt Lâm, @Trần Thanh Phương
Giúp mk vs!
3 g) \(xyz=x+y+z+2\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=\Sigma_{cyc}\left(x+1\right)\left(y+1\right)\)
\(\Rightarrow\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\) .Đặt \(\frac{1}{x+1}=a;\frac{1}{y+1}=b;\frac{1}{z+1}=c\Rightarrow x=\frac{1-a}{a}=\frac{b+c}{a};y=\frac{c+a}{b};z=\frac{a+b}{c}\) vì a + b + c = 1.
Khi đó \(P=\Sigma_{cyc}\frac{1}{\sqrt{\frac{\left(b+c\right)^2}{a^2}+2}}=\Sigma_{cyc}\frac{a}{\sqrt{2a^2+\left(b+c\right)^2}}\)
\(=\sqrt{\frac{2}{9}+\frac{4}{9}}.\Sigma_{cyc}\frac{a}{\sqrt{\left[\left(\sqrt{\frac{2}{9}}\right)^2+\left(\sqrt{\frac{4}{9}}\right)^2\right]\left[2a^2+\left(b+c\right)^2\right]}}\)
\(\le\sqrt{\frac{2}{3}}\Sigma_{cyc}\frac{a}{\sqrt{\left[\frac{2}{3}a+\frac{2}{3}b+\frac{2}{3}c\right]^2}}=\frac{\sqrt{6}}{2}\left(a+b+c\right)=\frac{\sqrt{6}}{2}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=2\)
3c) Nhìn quen quen, chả biết có lời giải ở đâu hay chưa nhưng vẫn làm:D (Em ko quan tâm nha!)
\(P=3-\Sigma_{cyc}\frac{2xy^2}{xy^2+xy^2+1}\ge3-\Sigma_{cyc}\frac{2xy^2}{3\sqrt[3]{\left(xy^2\right)^2}}=3-\frac{2}{3}\Sigma_{cyc}\sqrt[3]{\left(xy^2\right)}\)
\(\ge3-\frac{2}{3}\Sigma_{cyc}\frac{x+y+y}{3}=3-\frac{2}{3}\left(x+y+z\right)=3-2=1\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Ai phát hiện sai đề thì sửa và làm giúp mk hộ với, cảm ơn :) (chỉ cần làm tóm tắt thôi)
Áp dụng BĐT Cô - si ta có :
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{x+y}{2}}=\frac{4}{x+y}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\left(1\right)\)
Áp dụng BĐT trên ta được :
\(\frac{1}{2a+b+c}=\frac{1}{\left(a+b\right)\left(a+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)
\(\Rightarrow\left(\frac{1}{2a+b+c}\right)^2\le\frac{1}{16}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2\)
Chứng minh tương tự rồi cộng các vế lại cho nhau ta được :
\(A\le\frac{1}{16}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2+\frac{1}{16}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)^2+\left(\frac{1}{a+b}+\frac{1}{b+c}\right)^2\)
\(\Rightarrow16A\le\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2+\left(\frac{1}{a+c}+\frac{1}{b+c}\right)^2+\left(\frac{1}{a+b}+\frac{1}{b+c}\right)^2\)
\(=\frac{2}{\left(a+b\right)^2}+\frac{2}{\left(b+c\right)^2}+\frac{2}{\left(c+a\right)^2}+\frac{2}{\left(a+b\right)\left(a+c\right)}+\frac{2}{\left(b+c\right)\left(a+b\right)}+\frac{2}{\left(a+c\right)\left(b+c\right)}\)
Đặt \(\left(\frac{1}{a+b};\frac{1}{b+c};\frac{1}{c+a}\right)\rightarrow\left(x;y;z\right)\)
Khi đó \(16A\le2x^2+2y^2+2z^2+2xy+2yz+2zx\)
Ta có BĐT phụ sau :
\(xy+yz+zx\le x^2+y^2+z^2\) ( tự chứng minh ) (2)
Áp dụng ta được :
\(16A\le4x^2+4y^2+4z^2=\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\)
\(\Rightarrow4A\le\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\)
Từ (1) \(\Rightarrow\frac{1}{\left(x+y\right)^2}\le\frac{1}{16}\left(\frac{1}{x}++\frac{1}{y}\right)^2\)( bình phương 2 vế lên )
Áp dụng BĐT này ta được :
\(4A\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}\right)^2+\frac{1}{16}\left(\frac{1}{b}+\frac{1}{c}\right)^2+\frac{1}{16}\left(\frac{1}{c}+\frac{1}{a}\right)^2\)
\(\Rightarrow64A\le\frac{1}{a^2}+\frac{2}{ab}+\frac{1}{b^2}+\frac{1}{b^2}+\frac{2}{bc}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{2}{ac}+\frac{1}{a^2}\)
\(\Rightarrow32A\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
Áp dụng BĐT (2) ta được :
\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(\Rightarrow32A\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=3+3=6\)
\(\Rightarrow A\le\frac{6}{32}=\frac{3}{16}\)
Dấu " = " xảy ra khi a=b=c=1
Dài quá đi
Chúc bạn học tốt !!
Nguyễn Thị Ngọc Thơ, Nguyễn Việt Lâm, @No choice teen, @Trần Thanh Phương, @Akai Haruma
giúp e vs ạ! Cần gấp!
thanks nhiều!
cho {a,b,c>0a+b+c=abc{a,b,c>0a+b+c=abc\left\{{}\begin{matrix}a,b,c>0\\a+b+c=abc\end{matrix}\right..CMR: ba2+cb2+ac2+3≥(1a+1b+1c)2+√3ba2+cb2+ac2+3≥(1a+1b+1c)2+3\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}+3\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+\sqrt{3}
cho {a,b,c>0a+b+c=abc{a,b,c>0a+b+c=abc\left\{{}\begin{matrix}a,b,c>0\\a+b+c=abc\end{matrix}\right..CMR: ba2+cb2+ac2+3≥(1a+1b+1c)2+√3ba2+cb2+ac2+3≥(1a+1b+1c)2+3\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}+3\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+\sqrt{3}