K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2021

x=-3 

nhớ tít cho mình nha

14 tháng 10 2021

x= 1  pp: bình phương 2 vế

23 tháng 7 2021

a) ĐKXĐ: \(x^2+3x\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge0\\x\le-3\end{matrix}\right.\).

PT \(\Leftrightarrow10-\left(x^2+3x\right)=3\sqrt{x^2+3x}\). (*)

Đặt \(\sqrt{x^2+3x}=a\ge0\)

\((*)\Leftrightarrow a^2+3a-10=0\)

\(\Leftrightarrow\left(a-2\right)\left(a+5\right)=0\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-5\left(l\right)\end{matrix}\right.\).

Với \(a=2\Rightarrow\sqrt{x^2+3x}=2\Leftrightarrow x^2+3x-4=0\Leftrightarrow\left(x-1\right)\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\left(TM\right)\\x=-4\left(TM\right)\end{matrix}\right.\).

Vậy x = 1; x = -4

 

Ta có: \(VT=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}\)

\(=\sqrt{3x^2+6x+3+4}+\sqrt{5x^2+10x+5+16}\)

\(=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge2+4=6\)

Ta có: \(VP=5-x^2-2x\)

\(=-\left(x^2+2x+1\right)+6\)

\(=-\left(x+1\right)^2+6\le6\)

VP=VT khi x+1=0

hay x=-1

Vậy: x=-1

NV
22 tháng 8 2021

\(VT=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge\sqrt{4}+\sqrt{9}=5\)

\(VP=5-\left(x+1\right)^2\le5\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left(x+1\right)^2=0\Leftrightarrow x=-1\)

NV
22 tháng 3 2021

a.

ĐKXĐ: \(x\ge-5\)

\(\Leftrightarrow\left(x^2-5x+6\right)\left(\sqrt{x+5}+4\right)=\left(3x+5\right)\left(x^2-5x+6\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+6=0\\\sqrt{x+5}+4=3x+5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\\sqrt{x+5}=3x+1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{3}\\x+5=9x^2+6x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{3}\\9x^2+5x-4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\left(loại\right)\\x=\dfrac{4}{9}\end{matrix}\right.\)

NV
22 tháng 3 2021

b. Bạn coi lại đề, pt này nghiệm rất xấu

c.

ĐKXĐ: \(1\le x\le7\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

ĐKXĐ: \(x\in R\)

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

=>\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}+x^2+2x-4=0\)

\(\Leftrightarrow\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}+x^2+2x+1-5=0\)

=>\(\sqrt{3x^2+6x+7}-2+\sqrt{5x^2+10x+14}-3+\left(x+1\right)^2=0\)

=>\(\dfrac{3x^2+6x+7-4}{\sqrt{3x^2+6x+7}+2}+\dfrac{5x^2+10x+14-9}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)

=>

\(\dfrac{3x^2+6x+3}{\sqrt{3x^2+6x+7}+2}+\dfrac{5x^2+10x+5}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)

=>\(\dfrac{3\left(x^2+2x+1\right)}{\sqrt{3x^2+6x+7}+2}+\dfrac{5\left(x^2+2x+1\right)}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)

\(\Leftrightarrow\dfrac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\dfrac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)

=>\(\left(x+1\right)^2\left(\dfrac{3}{\sqrt{3x^2+6x+7}+2}+\dfrac{5}{\sqrt{5x^2+10x+14}+3}+1\right)=0\)

=>\(\left(x+1\right)^2=0\)

=>x+1=0

=>x=-1(nhận)

13 tháng 9 2018

ĐKXĐ: \(\orbr{\begin{cases}x\le-\frac{2}{\sqrt{5}}-1\\x\ge\frac{2}{\sqrt{5}}-1\end{cases}}\) 

PT \(\Leftrightarrow5\sqrt{5x^2+10x+1}=35-10x-5x^2\) 

\(\Leftrightarrow5\sqrt{5x^2+10x+1}=36-\left(5x^2+10x+1\right)\) 

Đặt \(\sqrt{5x^2+10x+1}=y\ge0\) 

\(\Rightarrow y^2+5y-36=0\) 

\(\Rightarrow\orbr{\begin{cases}y=4\\y=-9\end{cases}}\) 

Tự tìm x

16 tháng 8 2019

Đk: \(5x^2+10x+1\ge0\)

Đặt \(t=\sqrt{5x^2+10x+1}\ge0\)

\(pt\Leftrightarrow\sqrt{5x^2+10x+1}=\frac{-\left(5x^2+10x+1\right)}{5}+\frac{36}{5}\)

\(\Leftrightarrow5t=-t^2+36\Leftrightarrow t^2+5t-36=0\)

\(\Leftrightarrow\left(t-4\right)\left(t+9\right)=0\Leftrightarrow t=4\) ( do \(t\ge0\) )

\(\Leftrightarrow5x^2+10x+1=16\Leftrightarrow5x^2+10x-15=0\)

\(\Leftrightarrow5\left(x-1\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)( TM )

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:
Đặt $\sqrt{5x^2+10x+1}=a(a\geq 0)$ thì pt trở thành:

$a=7-(x^2+2x)=7-\frac{a^2-1}{5}$

$\Leftrightarrow a=\frac{36-a^2}{5}$

$\Leftrightarrow 5a=36-a^2$
$\Leftrightarrow a^2+5a-36=0$

$\Leftrightarrow (a-4)(a+9)=0$

$\Leftrightarrow a=4$ (do $a\geq 0$)

$\Leftrightarrow 5x^2+10x+1=16$

$\Leftrightarrow 5x^2+10x-15=0$

$\Leftrightarrow 5(x-1)(x+3)=0$

$\Leftrightarrow x=1$ hoặc $x=-3$

Vậy $A=\left\{1;-3\right\}$