Cho hình vuông ABCD (AB=a) , M là một điểm bất kỳ trên cạnh BC . Tia Ax vuông góc với AM cắt đường thẳng CD tại K . Gọi I là trung điểm cảu đoạn thẳng MK. Tia AI cắt đường thẳng CD tại E . Đường thẳng qua M song song với AB cắt AI tại N
1, Tứ giác MNKE là hình gì? Chứng minh
2, Cmr :\(AK^2=KC.KE\)
3, Cmr : Khi điểm M di chuyển trên cạnh Bc thì tam giác CME luôn có chu vi không đổi
4, Tia AM cắt đường thẳng CD tại G. Cmr : \(\frac{1}{AM^2}+\frac{1}{AG^2}\) không phụ thuộc vào vị trí của điểm M