K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

làm tương tự

bài 1: Cmr ch­­­u so tan cung cua cac so tu nhien n va n^5 la nhu nhau.

bài 2: phan h da thuc sau thanh nhan tu: x^3(x^2-7)^2-36x . cmr phan thuc nay chia het cho 7 vs moi n thuoc Z

Bài làm

Bai 1 : 
Xét  
 
Vì  chia hết cho 10 (h 5 số tự nhiên liên tiếp chia hết cho 2 và cho 5
 chia hết cho 10
 chia hết cho 10
\Rightarrow A có chữ số tận cùng là 0 Hay  và  có chữ số tận cùng giống nhau.

Bài 2
 
 
 
 
Vì phân thức trên là tích của 7 số tự nhiên liên tiếp nên nó chia hết cho 7

10 tháng 12 2016

Ta có: \(5040=16.9.5.7\)

\(A=\text{ }n^3\left(n^2-7\right)^2-36n=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+2\right)\)

Chứng minh chia hết cho 24

Đây là 7 số nguyên liên tiếp nên sẽ có ít nhất 3 số chẵn liên tiếp mà trong 3 số chẵn liên tiếp sẽ có 2 số chia hết cho 2 và 1 số chia hết cho 4 nên A chia hết cho 16

Chứng minh chia hết cho 9

Cứ 3 số liên tiếp thì chia hết cho 3 mà trong này ta có 2 bộ số như vậy nên chia hết cho 9

Chứng minh chia hết cho 5

Trong 5 số liên tiếp có ít nhất 1 số chia hết cho 5 nên A chia hết cho 5

Chứng minh chia hết cho 7

Trong 7 số liên tiếp có ít nhất 1 số chia hết cho 7 nên A chia hết cho 7

Vì 16,9,5,7 là các số nguyên tố cũng nhau từng đôi 1 nên A chia hết cho 5040

7 tháng 8 2021

A = n3(n2 -7)2 – 36n chia hết cho 5040 với mọi số tự nhiên n.
Hướng phân tích:
+ Trước hết cho hoc sinh nhận xét về các hạng tử của biểu thức A
+ Từ đó phân tích A thành nhân tử
Giải: Ta có
A =n[n2(n2 -7)2 -36]= n[(n3 -7n2)-36]
= n(n3 -7n2 -6)( n3 -7n2 +6)
Mà n3 -7n2 -6 = (n+1) (n+2) (n-3)
n3 -7n2 +6 = (n-1)(n-2)(n+3)
Do đó:
A= (n-3)(n-2)(n-1)(n+1)(n+2)(n+3)
Đây là tích của 7 số nguyên liên tiếp.Trong 7 số nguyên liên tiếp
+Tồn tại một  bội của 5 ⇒ A chia hết cho 5
+Tồn tại một bội của 7 ⇒ A chia hết cho 7
+Tồn tại hai bội của 3 ⇒ A chia hết cho 9
+Tồn tại ba bội số của 2,trong đó có một bội số của 4 ⇒ A chia hết cho 16
A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho
5.7.9.16 =5040.(đpcm)

18 tháng 2 2017

\(x^7-14x^5+49x^3-36x\)

= \(x^3\left(x^4-14x^2+49\right)-36x\)

= \(x^3\left(x^2-7\right)^2-36x\)

=\(x\left[\left(x\left(x^2-7\right)\right)^2-36\right]\)

=\(x\left[\left(x\left(x^2-7\right)-6\right)\left(x\left(x^2-7\right)+6\right)\right]\)

30 tháng 7 2016

Ta có 5040 = 24. 32.5.7

A= n3(n2- 7)2 – 36n = n.[ n2(n2-7)2 – 36 ] = n. [n.(n2-7 ) -6].[n.(n2-7 ) +6]

 = n.(n3-7n – 6).(n3-7n +6)

Ta lại có n3-7n – 6 = n3 + n2 –n2 –n – 6n -6 = n2.(n+1)- n (n+1) -6(n+1)

=(n+1)(n2-n-6)= (n+1 )(n+2) (n-3)

Tương tự : n3-7n+6 = (n-1) (n-2)(n+3) 

Do đó A= (n-3)(n-2) (n-1) n (n+1) (n+2) (n+3)

Ta thấy : A là tích của 7 số nguyên liên tiếp mà trong 7 số nguyên liên tiếp:

-         Tồn tại một bội số của 5 (nên A chia hết  5 )

-         Tồn tại một bội của 7 (nên A chai hết  7 )

-         Tồn tại hai bội của 3 (nên A chia hết  9 )

-         Tồn tại 3 bội của 2 trong đó có bội của 4 (nên A chia hết 16)

Vậy A chia hết cho 5, 7,9,16 đôi một nguyên tố cùng nhau  A 5.7.9.16= 5040

26 tháng 11 2023

a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn

b: Đặt \(A=n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

n lẻ nên n=2k+1

=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)

=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)

c: 

loading...

loading...

d: Đặt \(B=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\left(n^3-4n\right)\)

\(=n\left(n-4\right)\left(n^2-4\right)\)

\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)

n chẵn và n>=4 nên n=2k

B=n(n-4)(n-2)(n+2)

\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)

\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)

Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp

nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)

=>B chia hết cho \(16\cdot24=384\)