So sánh :
A = 10011001/10021002 và
B = 10011001+ 101101/10021002+101202
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{10081008}{10021002}=\frac{1008.10001}{1002.10001}=\frac{1008}{1002}=\frac{168}{167}\)
Giá trị phân số này không thể chuyển thành số thập phân được nhé
Tính A=\(1+2^2+2^3+..+2^{99}\)
=> 2A-A=A=\(\left(2+2^2+2^3+..+.2^{100}\right)-\left(1+2+2^2+..+2^{99}\right)=2^{100}-1\)
ta có B= \(5.4^4< 8.4^4=2^{11}< 2^{100}-1\)
=> A>B
Ta có : A=1+2+2^2+2^3+...+2^99
2A=2^2+2^3+2^4+...+2^100
A=2^100-1
\(A=\frac{17^{201}+1}{17^{202}+1}< 1\)
\(\rightarrow A=\frac{17^{201}+1}{17^{202}+1}< \frac{17^{201}+1+16}{17^{202}+1+16}\)
\(\rightarrow A=\frac{17^{201}+1}{17^{202}+1}< \frac{17^{201}+17}{17^{202}+17}\)
\(\rightarrow A=\frac{17^{201}+1}{17^{202}+1}< \frac{17\left(17^{200}+1\right)}{17\left(17^{201}+1\right)}\)
\(\rightarrow A=\frac{17^{201}+1}{17^{202}+1}< \frac{17^{200}+1}{17^{201}+1}\)
\(\rightarrow A=\frac{17^{201}+1}{17^{202}+1}< B\)
\(\rightarrow A< B\)
\(A=\frac{1001^{1001}}{1002^{1002}}=\frac{1001^{1000}.1001}{1002^{1001}.1002}\)
\(B=\frac{1001^{1001}+101101}{1002^{1002}+101202}=\frac{1001.1001^{1000}+1001.101}{1002.1002^{1001}+1002.101}\)
\(=\frac{1001\left(1001^{1000}+101\right)}{1002\left(1002^{1001}+101\right)}\)
Xét \(\frac{1001^{1000}+101}{1002^{1001}+101}\)\(-\frac{1001^{1000}}{1002^{1001}}\)
\(=\frac{1002^{1001}\left(1001^{1000}+101\right)-1001^{1000}\left(1002^{1001}+101\right)}{\left(1002^{1001}+101\right).1002^{1001}}\)
\(=\frac{1002^{1001}.1001^{1000}+1002^{1001}.101-1001^{1000}.1002^{1001}-1001^{1000}.101}{\left(1002^{1001}+101\right).1002^{1001}}\)
\(=\frac{101\left(1002^{1001}-1001^{1000}\right)}{\left(1002^{1001}+101\right).1002^{1001}}>0\)
=> \(\frac{1001^{1000}+101}{1002^{1001}+101}\)\(>\frac{1001^{1000}}{1002^{1001}}\)
=> \(\frac{1001\left(1001^{1000}+101\right)}{1002\left(1002^{1001}+101\right)}>\frac{1001^{1000}.1001}{1002^{1001}.1002}\)
=> \(B>A\)
Mình cảm ơn ạ! Hi vọng sau này ban sẽ giúp mình nữa nha ^^