K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2019

dk 3x+2 

P= \(\frac{x\left(3x-1\right)}{3x+2}.\frac{3x+2}{\left(3x-1\right)x^2+4\left(3x-1\right)}=\frac{x\left(3x-1\right)}{3x+2}.\frac{3x+2}{\left(3x-1\right)\left(x^2+4\right)}=\)\(\frac{x}{x^2+4}\)

dk \(\hept{\begin{cases}3x-1\ne0\\3x+2\ne0\end{cases}< =>\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne\frac{-2}{3}\end{cases}}}\)(1)

P(x2+4) = x <=> Px2-x+4P=0

để phương trình trên có nghiệm thỏa mãn (1) <=> \(\hept{\begin{cases}P\frac{1}{3^2}-\frac{1}{3}+4P\ne0\\P\frac{4}{9}+\frac{2}{3}+4P\ne0\\1^2-4.P.\left(4P\right)\ge0\end{cases}< =>\hept{\begin{cases}P\ne\frac{3}{37}\\P\ne\frac{-3}{20}\\\frac{-1}{4}\le P\le\frac{1}{4}\end{cases}}}\)

Vậy P max = 1/4 khi \(\frac{1}{4}x^2-x+1=0< =>x=2\)

P min = -1/4 khi \(\frac{-1}{4}x^2-x-1=0< =>x=-2\)

3 tháng 2 2020

\(ĐKXĐ:x\ne0;x\ne\pm2\)

a) \(M=\left[\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right]:\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(\Leftrightarrow M=\left[\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\)

\(\Leftrightarrow M=\frac{3x^2-6x\left(x+2\right)+3x\left(x-2\right)}{3x\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)

\(\Leftrightarrow M=\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)

\(\Leftrightarrow M=\frac{-18x\left(x+2\right)}{18x\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow M=-\frac{1}{x-2}\)

\(\Leftrightarrow M=\frac{1}{2-x}\)

b) Để M đạt giá trị lớn nhất

\(\Leftrightarrow2-x\)đạt giá trị nhỏ nhất

\(\Leftrightarrow x\)đạt giá trị lớn nhất

Vậy để M đạt giá trị lớn nhất thì x phải đạt giá trị lớn nhất \(\left(x\inℤ\right)\)

5 tháng 2 2020

玉明, bạn làm sai rồi. Dấu ngoặc vuông là dấu phần nguyên không phải dấu ngoặc thường

19 tháng 2 2019

a) \(-ĐKXĐ:x\ne\pm2;1\)

Rút gọn : \(A=\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)

\(=\left(\frac{1}{x+2}+\frac{-2}{x-2}+\frac{x}{x^2-4}\right).\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\left[\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{\left(-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x}{\left(x-2\right)\left(x+2\right)}\right]\)\(.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\left[\frac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\right].\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)\(=\frac{x+1}{\left(x+2\right)^2}\)

b) \(A>0\Leftrightarrow\frac{x+1}{\left(x+2\right)^2}>0\Leftrightarrow\orbr{\begin{cases}x+1< 0;\left(x+2\right)^2< 0\left(voly\right)\\x+1>0;\left(x+2\right)^2>0\end{cases}}\)

\(\Leftrightarrow x>1;x>-2\Leftrightarrow x>1\)

Vậy với mọi x thỏa mãn x>1 thì A > 0

c) Ta có : \(x^2+3x+2=0\Leftrightarrow x^2+x+2x+2=0\)

\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

Vậy x = -1;-2

19 tháng 12 2019

\(P=4\left(\frac{3}{4}x-1\right)+\left(12x^2-3x\right):\left(-3x\right)-\left(2x+1\right)\)

    \(=4.\frac{3}{4}x-4.1+12x^2:\left(-3x\right)+\left(-3x\right):\left(-3x\right)-2x-1\)

   \(=3x-4-4x+1-2x-1=-3x-4\)

Thay \(x=\frac{-4}{3}\)vào P ta được \(P=-3.\frac{-4}{3}-4=4-4=0\)

13 tháng 12 2018

a, ĐỂ A có nghĩa :

\(\Rightarrow x-2\ne0\)

\(\Rightarrow x\ne2\)

13 tháng 12 2018

\(a,\text{để a xác định thì }\hept{\begin{cases}x-2\ne0\\2-x\ne0\end{cases}\Rightarrow x\ne2}\)

\(b,\left[\left(\frac{x+1}{x-2}+\frac{3}{2-x}-3x\right):\frac{1-3x}{x-2}\right]-\frac{x^2+4}{x-2}\)

\(=\left[\left(\frac{x+1}{x-2}-\frac{3}{x-2}-3x\right):\frac{1-3x}{x-2}\right]-\frac{x^2+4}{x-2}\)

\(=\left(1-3x\right)\cdot\frac{\left(x-2\right)}{1-3x}-\frac{x^2+4}{x-2}=\frac{\left(x-2\right)^2}{x-2}-\frac{x^2+4}{x-2}=\frac{-4x}{x-2}\)

Vậy với \(x=\frac{1}{2}\text{ }\Rightarrow A=\frac{-\frac{4.1}{2}}{\frac{1}{2}-2}=\frac{4}{3}\)

12 tháng 4 2019

A=x+2019/x thì lm sao tìm đc GTLN

12 tháng 4 2019

tui biết GTLN của nó là \(\frac{2019}{2}\)nhưng ko bt lm