K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

không dùng denta

19 tháng 10 2016

Ta có \(\frac{n\left(2n-1\right)}{26}=k^2\Leftrightarrow2n^2-n-26k^2=0\)

\(\Delta=208k^2+1=t^2\)(vì n nguyên dương)

\(\Rightarrow\left(t+4\sqrt{13}k\right)\left(t-4\sqrt{13}k\right)=1\)

\(\Leftrightarrow\hept{\begin{cases}t+4\sqrt{13}k=1\\t-4\sqrt{13}k=1\end{cases}\Leftrightarrow\hept{\begin{cases}k=0\\t=1\end{cases}}}\)

Thế vào tìm được \(\orbr{\begin{cases}n=0\\n=\frac{1}{2}\end{cases}}\)

Vậy không có giá trị n nguyên dương nào thỏa mãn cái đó

14 tháng 6 2018

\(\frac{n\left(2n-1\right)}{26}\text{ là SCP }\Leftrightarrow n\left(2n-1\right)=26k^2\)

\(\Delta_n=208k^2+1=y^2\Leftrightarrow y^2-208k^2=1\underrightarrow{\text{PELL}}\)

\(k=\pm\frac{\left(649-180\sqrt{13}\right)^m-\left(649+180\sqrt{13}\right)^m}{8\sqrt{13}}\)

\(n=\frac{1}{8}\left[-\left(649-180\sqrt{13}\right)^m-\left(649+180\sqrt{13}\right)^m+2\right]\left(m\inℤ,m\ge0\right)\)

8 tháng 8 2020

anh có thể k cho em được ko em cần thêm k đúng

12 tháng 8 2020

Dễ thôi :D 

Đặt \(\frac{n\left(2n-1\right)}{26}=q^2\) Khi đó ta được:\(n\left(2n-1\right)=26q^2\)

Do VP chẵn nên n phải là số chẵn, đặt n = 2k ( k tự nhiên )

\(\Rightarrow k\left(4k-1\right)=13q^2\)

Mặt khác \(\left(k;4k-1\right)=1\Rightarrow\hept{\begin{cases}k=a^2\\4k-1=13b^2\end{cases}}\left(h\right)\hept{\begin{cases}k=13b^2\\4k-1=a^2\end{cases}}\) với a, b là các số tự nhiên

\(TH1:k=a^2;4k-1=13b^2\Rightarrow4k=13b^2+1=12b^2+b^2+1\)

Vì vậy \(b^2\equiv3\left(mod4\right)\) vô lý vì b2 phải là số chính phương.

\(TH2:k=13b^2;4k-1=a^2\Rightarrow4k=a^2+1\) tương tự thì không tồn tại.

Vậy không tồn tại n nguyên dương sao cho \(\frac{n\left(2n-1\right)}{26}\) là số chính phương

30 tháng 5 2020

TH1) Với n = 6k

ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+1\right)\left(12k+1\right)\) không chia hết cho 6 

=> Loại 

TH2) Với n = 6k+1 

ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+2\right)\left(12k+3\right)⋮6\)

=> \(A=\frac{\left(6k+2\right)\left(12k+3\right)}{6}=\left(3k+1\right)\left(4k+1\right)\)là số chính phương 

Lại có: ( 3k + 1 ; 4k + 1 ) = ( 3k + 1 ; k ) = ( 2k + 1 ; k ) = ( k + 1 ; k ) = ( k ; 1 ) = 1 

=> 3k + 1 và 4k + 1 đồng thời là 2 số chính phương 

+) Với k \(\equiv\)\(1,3,5,7\)(mod 8 ) => 4k + 1 không là số cp

+) Với k \(\equiv\)2; 4; 6 ( mod 8) => 3k + 1 không là số chính phương 

=> k \(\equiv\)0 ( mod 8) => k = 8h

=> Tìm h bé nhất để 24h + 1 và 32h + 1 là số chính phương(1)

+) Với h \(\equiv\)\(3,4,6\)( mod7) => 24k + 1 không là số chính phương 

+) Với h \(\equiv\)1  (mod 7 ) => 32h + 1 không là số cp 

=> h \(\equiv\)0; 2; 5 (mod 7 ) 

=> h = 7m hoặc h = 7n + 2 hoặc h = 7t + 7  ( với m;n; t nguyên dương )

Nếu m = 1 => h = 7 => 24h + 1 = 169 và 32h + 1 = 225 là hai số chính phương và h nhỏ nhất 

=> n = 6k + 1 và k = 8h = 56 

=> n = 337

=> A = 38025 là số chính phương

TH3) Với n = 6k + 2 

ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+3\right)\left(12k+5\right)\)không chia hết cho 6

TH4) Với n = 6k + 3

ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+4\right)\left(12k+7\right)\)không chia hết cho 6 

TH5) Với n = 6k + 4 

ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+5\right)\left(12k+9\right)\)không chia hết cho 6

TH6) Với n = 6k + 5 

ta có \(\left(n+1\right)\left(2n+1\right)=\left(6k+6\right)\left(12k+11\right)⋮6\)

=> \(A=\frac{\left(6k+6\right)\left(12k+11\right)}{6}=\left(k+1\right)\left(12k+11\right)\)

mà ( k + 1; 12k + 11 ) = 1 

=> k + 1 và 12k + 11 là 2 số chính phương 

tuy nhiên 12k + 11 chia 12 dư 11 mà 1 số chính phương chia 12 không dư 11 

=> Trường hợp này loại 

Vậy  n = 337 

Đề sai rồi bạn

9 tháng 8 2021

phải làd tìm số nguyên dương n sao cho