Phân tích các đa thức sau thành nhân tử:
a) \(\text{x}^{\text{4}}+3\text{x}^{\text{3}}-7\text{x}^{\text{2}}-27x-18\)
b) \(\text{x}^{\text{4}}+3\text{x}^{\text{3}}+3\text{x}^{\text{2}}+3x+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5.2^{18}.3^{18}.2^{12}-2.2^{28}.3^{14}.3^4}{5.2^{28}.3^{18}-7.2^{29}.3^{18}}=\frac{5.2^{30}.3^{18}-2^{29}.3^{18}}{5.2^{28}.3^{18}-7.2^{29}.3^{18}}=\frac{2^{29}.3^{18}\left(5.2-1\right)}{2^{28}.3^{18}\left(5-7.2\right)}\)
\(\frac{2^{29}.3^{18}.9}{2^{28}.3^{18}.-9}=\frac{2.9}{-9}=-2\)
\(=x^4+6x^3+5x^2-x^3-6x^2-5x-6x^2-36x-30\)
\(=x^2\left(x^2+6x+5\right)-x\left(x^2+6x+5\right)-6\left(x^2+6x+5\right)\)
\(=\left(x^2-x-6\right)\left(x^2+6x+5\right)\)
\(=\left(x-3\right)\left(x+2\right)\left(x+1\right)\left(x+5\right)\)
c: \(E=\dfrac{\left(x-5\right)^2}{x\left(x-5\right)}=\dfrac{x-5}{x}\)
\(B=x^3+3x^2+3x^2y+3xy^2+y^3+3y^2+6xy+3x+3y+2019\)
\(=\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2019\)
\(=\left[\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+1\right]+2018\)
\(=\left(x+y-1\right)^3+2018\)
Mà \(x+y=101\)
\(B=\left(101-1\right)^3+2018=1002018\)
Đang 3x2+3y2 sao lại ra -3(x+y)2 ?? Phải là +3(x2+y2) chứ :v Không nhớ hằng đẳng thức 1 và 3 à :v với cả 6xy đâu?
\(=2\left[\left(x-3\right)^2-\dfrac{1}{16}\left(x-1\right)^2\right]\\ =2\left(x-3-\dfrac{1}{4}x+\dfrac{1}{4}\right)\left(x-3+\dfrac{1}{4}x-\dfrac{1}{4}\right)\\ =2\left(\dfrac{3}{4}x-\dfrac{11}{4}\right)\left(\dfrac{5}{4}x-\dfrac{13}{4}\right)\)
a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)
\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
a) x4 + 3x3 - 7x2 - 27x - 18
= x4 + x3 + 2x3 + 2x2 - 9x2 - 9x - 18x - 18
= x3 . (x + 1) + 2x2 . (x + 1) - 9x . (x + 1) - 18(x + 1)
= (x + 1)(x3 + 2x2 - 9x - 18)
= (x + 1)[x2 .(x + 2) - 9.(x + 2)]
= (x + 1)(x + 2)(x2 - 32)
= (x + 1)(x + 2)(x + 3)(x - 3)
b) x4 + 3x3 + 3x2 + 3x + 2
= x4 + x3 + 2x3 + 2x2 + x2 + x + 2x + 2
= x3 (x + 1) + 2x2 . (x + 1) + x(x + 1) + 2(x + 1)
= (x + 1)(x3 + 2x2 + x + 2)
= (x + 1)[x2 .(x + 2) + (x + 2)]
= (x + 1)(x + 2)(x2 + 1)
\(x^4+3x^3-7x^2-27x-18\)
\(=\left(x^4+x^3\right)+\left(2x^3+2x^2\right)-\left(9x^2+9x\right)-\left(18x-18\right)\)
\(=x^3\left(x+1\right)+2x^2\left(x+1\right)-9x\left(x+1\right)-18\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+2x^2-9x-18\right)\)
\(=\left(x+1\right)\left[\left(x^3-3x^2\right)+\left(5x^2-15x\right)+\left(6x-18\right)\right]\)
\(=\left(x+1\right)\left[x^2\left(x-3\right)+5x^2\left(x-3\right)+6\left(x-3\right)\right]\)
\(=\left(x+1\right)\left(x-3\right)\left(x^2+5x+6\right)\)
\(=\left(x+1\right)\left(x-3\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)^2\)