K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

theo BĐT cô - si ta có :

\(\frac{a+b}{2}\ge\sqrt{ab}\) \(\left(a\ge0,b\ge0\right)\)

\(\Leftrightarrow\)\(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\)\(a+b+a+b\ge2\sqrt{ab}+a+b\)

\(\Leftrightarrow\)\(2a+2b\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)

\(\Leftrightarrow\)\(2\left(a+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)

\(\Leftrightarrow\)\(\frac{1}{4}\cdot2\cdot\left(a+b\right)\ge\frac{1}{4}\cdot\left(\sqrt{a}+\sqrt{b}\right)^2\)

\(\Leftrightarrow\)\(\sqrt{\frac{a+b}{2}}\ge\sqrt{\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}}\)

\(\Leftrightarrow\)\(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\) \(\left(đpcm\right)\)

12 tháng 10 2019

Biến đổi tương đương đi

10 tháng 7 2019

Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)

Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)

Bài 2: Thêm đk a,b,c >0.

Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.

Bài 3: Nó sao sao ấy ta?

NV
3 tháng 6 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\ge4\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge2\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z\ge1\)

\(P=\sqrt{x^2+2y^2}+\sqrt{y^2+2z^2}+\sqrt{z^2+2x^2}\)

\(\Rightarrow P\ge\sqrt{\frac{\left(x+2y\right)^2}{3}}+\sqrt{\frac{\left(y+2z\right)^2}{3}}+\sqrt{\frac{\left(z+2x\right)^2}{3}}\)

\(\Rightarrow P\ge\frac{1}{\sqrt{3}}\left(3x+3y+3z\right)\ge\frac{3}{\sqrt{3}}=\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=3\)

25 tháng 2 2018

Tuogw tựCâu hỏi của Nue nguyen - Toán lớp 10 | Học trực tuyến

28 tháng 7 2020

Đặt ⎧⎪⎨⎪⎩a+b−c=xb+c−a=yc+a−b=z(x,y,z>0){a+b−c=xb+c−a=yc+a−b=z(x,y,z>0)

⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a=z+x2b=x+y2c=y+z2⇒{a=z+x2b=x+y2c=y+z2

⇒√a(1b+c−a−1√bc)=√2(z+x)2(1y−2√(x+y)(y+z))≥√x+√z2(1y−2√xy+√yz)=√x+√z2y−1√y⇒a(1b+c−a−1bc)=2(z+x)2(1y−2(x+y)(y+z))≥x+z2(1y−2xy+yz)=x+z2y−1y
Tương tự

⇒∑√a(1b+c−a−1√bc)≥∑√x+√z2y−∑1√y⇒∑a(1b+c−a−1bc)≥∑x+z2y−∑1y

⇒VT≥∑[x√x(y+z)]2xyz−∑√xy√xyz≥2√xyz(x+y+z)2xyz−x+y+z√xyz≐x+y+z√xyz−x+y+z√xyz=0⇒VT≥∑[xx(y+z)]2xyz−∑xyxyz≥2xyz(x+y+z)2xyz−x+y+zxyz≐x+y+zxyz−x+y+zxyz=0

(∑√xy≤x+y+z,x√x(y+z)≥2x√xyz)(∑xy≤x+y+z,xx(y+z)≥2xxyz)

dấu = ⇔x=y=z⇔a=b=c

Mai Anh ! cậu giỏi quá, cậu nè :33 

2 tháng 9 2019

1. Ta có:

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( Nếu a, b ≥ 0)

=> \(a-2\sqrt{ab}+b\ge0\)

=> \(\left(a-2\sqrt{ab}+b\right)+2\sqrt{ab}\ge0+2\sqrt{ab}\)

=> \(a+b\ge2\sqrt{ab}\) => \(\frac{\left(a+b\right)}{2}\ge\frac{2\sqrt{ab}}{2}\)

=> \(\frac{\left(a+b\right)}{2}\ge\sqrt{ab}\);

(Dấu "=" xảy ra khi \(\sqrt{a}-\sqrt{b}=0\) => a = b)

2 tháng 9 2019

1. BĐT \(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

2. BĐT \(\Leftrightarrow\frac{a+b}{2}\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}\)

\(\Leftrightarrow2\left(a+b\right)\ge a+2\sqrt{ab}+b\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

3. Ta có: \(M=\frac{2}{\sqrt{1\cdot2005}}+\frac{2}{\sqrt{2\cdot2004}}+...+\frac{2}{\sqrt{1003\cdot1003}}\)

Áp dụng BĐT Cô-si:

\(\sqrt{1\cdot2005}\le\frac{1+2005}{2}=1003\)

Do dấu "=" không xảy ra nên \(\sqrt{1\cdot2005}< 1003\)

Khi đó: \(\frac{2}{\sqrt{1\cdot2005}}>\frac{2}{1003}\)

Chứng minh tương tự với các phân thức còn lại rồi cộng vế ta được :

\(M>\frac{2006}{1003}>\frac{2005}{1003}\) ( đpcm )

3 tháng 5 2017

Áp dụng bất đẳng thức bunyakovsky: \(\left(b+c\right)^2\le2\left(b^2+c^2\right)\Leftrightarrow b+c\le\sqrt{2\left(b^2+c^2\right)}\)

tương tự với các cặp còn lại , ta thu được \(VT\ge\frac{a^2}{\sqrt{2\left(b^2+c^2\right)}}+\frac{b^2}{\sqrt{2\left(a^2+c^2\right)}}+\frac{c^2}{\sqrt{2\left(a^2+b^2\right)}}\)

Đặt \(\hept{\begin{cases}\sqrt{b^2+c^2}=x\\\sqrt{a^2+c^2}=y\\\sqrt{a^2+b^2}=z\end{cases}}\)(\(x,y,z\ge0\)và \(x+y+z=\sqrt{2011}\))\(\Leftrightarrow\hept{\begin{cases}a^2=\frac{y^2+z^2-x^2}{2}\\b^2=\frac{x^2+z^2-y^2}{2}\\c^2=\frac{x^2+y^2-z^2}{2}\end{cases}}\)

\(VT\ge\frac{y^2+z^2-x^2}{2\sqrt{2}x}+\frac{x^2+z^2-y^2}{2\sqrt{2}y}+\frac{x^2+y^2-z^2}{2\sqrt{2}z}\)

\(=\frac{1}{2\sqrt{2}}\left(\frac{y^2+z^2-x^2}{x}+\frac{z^2+x^2-y^2}{y}+\frac{x^2+y^2-z^2}{z}\right)=\frac{1}{2\sqrt{2}}\left(\frac{y^2}{x}+\frac{z^2}{x}+\frac{z^2}{y}+\frac{x^2}{y}+\frac{x^2}{z}+\frac{y^2}{z}-x-y-z\right)\)

ÁP dụng bất đẳng thức cauchy-schwarz:

\(\frac{y^2}{x}+\frac{z^2}{x}+\frac{x^2}{y}+\frac{z^2}{y}+\frac{y^2}{z}+\frac{x^2}{x}\ge\frac{\left(2x+2y+2z\right)^2}{2x+2y+2z}=2x+2y+2z\)

do đó \(VT\ge\frac{1}{2\sqrt{2}}\left(x+y+z\right)=\frac{1}{2}\sqrt{\frac{2011}{2}}\)( vì \(x+y+z=\sqrt{2011}\))

đẳng thức xảy ra khi \(x=y=z=\frac{\sqrt{2011}}{3}\)hay \(a=b=c=\frac{1}{3}\sqrt{\frac{2011}{2}}\)

NV
20 tháng 6 2020

Bạn tham khảo:

Câu hỏi của Nguyễn Bảo Trân - Toán lớp 9 | Học trực tuyến