tìm số nguyên n sao cho n3+2018n = 20202015+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(n^3+2018n=n\left(n-1\right)\left(n+1\right)+2019n⋮3\).
Lại có \(2020^{2019}+4\equiv1^{2019}+4\equiv2\left(mod3\right)\).
Từ đó suy ra không tồn tại n thoả mãn đề bài.
Ta có : \(n^3+2018n=n\left(n^2-1+2019\right)=\left(n-1\right)n\left(n+1\right)+2019n⋮3\forall n\inℤ\) (*)
Lại có : \(2020\equiv1\left(mod3\right)\)
\(\Rightarrow2020^{2019}\equiv1\left(mod3\right)\)
Và : \(4\equiv1\left(mod3\right)\)
Do đó : \(2020^{2019}+4\equiv2\left(mod3\right)\)
hay \(2020^{2019}+4⋮̸3\) . Điều này mâu thuẫn với (*)
Do đó, không tồn tại số nguyên n thỏa mãn đề.
Ta có :
Nếu n = 1 suy ra A = 0
Nếu n = 2 suy ra A = 5 là số nguyên tố
Nếu n>2 thì A là tích của hai thừa số mà mỗi thừa số đều lớn hơn hai . Vậy A là hợp số
Vậy để A = n3 – n2 + n – 1 là số nguyên tố thì n = 2.