Tìm GTLN (hoặc GTNN) của:
a) A=3x^2+8x+54
b) B=-x^2+4x-9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+3\right)\left(x-4\right)+7=x^2-x-5=\left(x^2-x+\frac{1}{4}\right)-\frac{1}{4}-5\)
\(=\left(x-\frac{1}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)
"=" <=> x = 1/2
\(B=3-\left(x-1\right)\left(x-2\right)=3-\left(x^2-3x+2\right)\)
\(=3-\left(x-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+2\right)\)
\(=3+\frac{1}{4}-\left(x-\frac{3}{2}\right)^2\le\frac{13}{4}\)
Xảy ra khi x = 3/2
\(B=3x^2-6xy+5y^2-y+3x+2016\)
\(3B=9x^2-18xy+15y^2-3y+9x+6048\)
\(3B=\left(9x^2-18xy+9y^2\right)+3\left(3x-3y\right)+\dfrac{9}{4}+\left(6y^2+6y+\dfrac{3}{2}\right)+6044,25\)
\(3B=\left(3x-3y\right)^2+3\left(3x-3y\right)+\dfrac{9}{4}+6\left(y^2+y+\dfrac{1}{4}\right)+6044,25\)
\(3B=\left(3x-3y+\dfrac{3}{2}\right)^2+6\left(y+\dfrac{1}{2}\right)^2+6044,25\ge6044,25\)
\(\Rightarrow B\ge2014,75\Leftrightarrow y=-\dfrac{1}{2};x=-1\)
Vậy MINB=2014,75<=>x=-1;y=-1/2
a, \(^{\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}\Rightarrow}x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+z^2\ge0}\)
\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\Rightarrow xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)
\(\Rightarrow A\le\frac{a^2}{3}\). dấu = xảy ra khi và chỉ khi x=y=z=a/3
b,Ap dụng bđt bunhia ta đc \(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=a^2\Rightarrow B\ge\frac{a^2}{3}\)
dấu = xảy ra khi x=y=z=a/3
\(A=3\left(x+\frac{4}{3}\right)^2+\frac{146}{3}\ge\frac{146}{3}\)
\(A_{min}=\frac{146}{3}\) khi \(x=-\frac{4}{3}\)
\(B=-\left(x-2\right)^2-5\le-5\)
\(B_{max}=-5\) khi \(x=2\)