Chứng minh 74^n+1 -74 chia hết cho 73 với mọi n
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
\(74^{n+1}-74=74^n\left(74-1\right)\)
\(=74^n.73⋮73\)
Vậy \(74^{n+1}-74⋮73\left(đpcm\right)\)
Ta có\(74^{n+1}\)-74= \(74^n\). 74 - 74= 74.( \(74^n\)-1)
mà ta có \(a^n-b^n\)chia hết cho a-b nên \(74^n-1=74^n-1^n\)chia hết cho 74-1=73
suy ra 74.(\(74^n-1\)) chia hết cho 73 => đpcm
P/s : hình như câu trả lời của bạn trên bị sai rồi ạ