cho hai tập hợp H={\(x\in R,1\le\left|x-2\right|< 3\) } , K=(0;3]\(\cup\left(\frac{7}{2};+\infty\right)\)
Tìm \(H\cap K\)
mọi người giúp e với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Liệt kê các phần tử của tập hợp �={�∈�∣ 2�2+3�+1=0 }A={x∈Z 2x2+3x+1=0 }
Ta có: 2�2+3�+1=0⇔[ �=−12 �=−1 2x2+3x+1=0⇔ x=−21 x=−1 .
Do đó: �={−1}A={−1}.
b) Cho hai tập hợp �={�∈�∣∣�∣>4}A={x∈R∣x∣>4} và �={�∈�∣−5≤�−1<5}B={x∈R−5≤x−1<5}. Xác định tập �=�\�X=B\A.
Ta có:
⚡∣�∣>4⇔[ �>4 �<−4⇒�=(−∞;−4)∪(4;+∞ )∣x∣>4⇔[ x>4x<−4⇒A=(−∞;−4)∪(4;+∞ ).
⚡−5≤�−1<5⇔−4≤�<6⇒�=[−4;6)−5≤x−1<5⇔−4≤x<6⇒B=[−4;6).
Suy ra �=�\�=[−4;4]X=B\A=[−4;4].
Ta có: \(A = \left\{ {x \in \mathbb{Z}| - 2 \le x \le 3} \right\} = \{ - 2; - 1;0;1;2;3\} \)
Và \(B = \{ x \in \mathbb{R}|{x^2} - x - 6 = 0\} = \{ - 2;3\} \)
Khi đó:
Tập hợp \(A\,{\rm{\backslash }}\,B\) gồm các phần tử thuộc A mà không thuộc B. Vậy\(A\,{\rm{\backslash }}\,B = \{ - 1;0;1;2\} \).
Tập hợp \(B\,{\rm{\backslash }}\,A\) gồm các phần tử thuộc B mà không thuộc A. Vậy \(B\,{\rm{\backslash }}\,A = \emptyset \)
\(H=[3;5)\Rightarrow H\cap K=\left\{3\right\}\cup\left(\frac{7}{2};5\right)\)
a) Nửa khoảng \(\left( {\left. { - 2\pi ;2\pi } \right]} \right.\)
b) \(\left\{ {x \in \mathbb{R}|\;\left| x \right| \le \sqrt 3 } \right\} = \left\{ {x \in \mathbb{R}|\; - \sqrt 3 \le x \le \sqrt 3 } \right\}\)
Đoạn \(\left[ {\left. { - \sqrt 3 ;\sqrt 3 } \right]} \right.\)
c) Khoảng \(\left( { - \infty ;0} \right)\)
d) \(\left\{ {x \in \mathbb{R}|\;1 - 3x \le 0} \right\} = \left\{ {x \in \mathbb{R}|\;x \ge \frac{1}{3}} \right\}\)
Nửa khoảng \(\left. {\left[ {\frac{1}{3}; + \infty } \right.} \right)\)
a) Khoảng \(\left( { - 2;3} \right)\)
b) Đoạn \(\left[ {1;10} \right]\)
c) Nửa khoảng \(\left( {\left. { - 5;\sqrt 3 } \right]} \right.\)
d) Nửa khoảng \(\left. {\left[ {\pi ;4} \right.} \right)\)
e) Khoảng \(\left( { - \infty ;\frac{1}{4}} \right)\)
g) Nửa khoảng \(\left[ {\left. {\frac{\pi }{2}; + \infty } \right)} \right.\)
\(A=\left\{-3;-2;-1;0;1;2;3;4;5\right\}\)
\(B=\left[3;a\right]\)
\(C=(-\infty;5]\)
\(D=[3;5)\)
\(E=[-2;+\infty)\)
\(F=\left\{0;1;2;3;4;5;6\right\}\)
\(G=\left(1;+\infty\right)\)
\(H=(-\infty;-1]\)
\(K=(-1;5]\)
\(I=(-\infty;4]\)
\(mx^2-4x+m-3=0\left(1\right)\)
Để tập hợp B có đúng 2 tập con và \(B\subset A\) thì \(\left(1\right)\) có 2 nghiệm phân biệt cùng dương
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\P>0\\S>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4-m\left(m-3\right)>0\\\dfrac{m-3}{m}>0\\\dfrac{4}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m-4< 0\\m< 0\cup m>3\\m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 4\\m< 0\cup m>3\\m>0\end{matrix}\right.\)
\(\Leftrightarrow3< m< 4\)
Ta có:
\(\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}\)
+) \(\overrightarrow{BG}=\dfrac{1}{3}\left(\overrightarrow{BM}+\overrightarrow{BN}\right)=\dfrac{1}{3}\left(-\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CN}\right)\)
\(=\dfrac{1}{3}\left(-\dfrac{2}{3}\overrightarrow{AB}+\overrightarrow{AC}-\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{DC}\right)=\dfrac{1}{3}\left(-\dfrac{13}{6}\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(=-\dfrac{13}{18}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
=> \(\overrightarrow{AG}=\dfrac{5}{18}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
Mặt khác:
\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}=\overrightarrow{AB}+k\overrightarrow{BC}=\overrightarrow{AB}+k\left(\overrightarrow{AC}-\overrightarrow{AB}\right)=\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\)
Để A, G, I thẳng hàng
=>\(\dfrac{\dfrac{5}{18}}{1-k}=\dfrac{\dfrac{1}{3}}{k}\Rightarrow k=\dfrac{6}{11}\)