K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2021

Toán lớp 1 mà thế hả em

9 tháng 2 2020

Hình tự vẽ :<

a) Xét ΔBCK và ΔCBH có:

CKB = BHC (= 90o)

BC: chung

KBC = HCB (ΔABC cân)

\(\Rightarrow\)ΔBCK = ΔCBH (c.g.c)

\(\Rightarrow\)BK = CH (2 cạnh tương ứng)

b) Ta có:

AB = AK + KB

AC = AH + HC

Mà AB = AC (ΔABC cân) và BK = CH (ΔBCK = ΔCBH)

\(\Rightarrow\)AK = AH

\(\Rightarrow\)ΔAKH cân

c) Xét ΔAIK và ΔAIH có:

AKI = AHI (= 90o)

AI: chung

AK = AH (ΔAKH cân)

\(\Rightarrow\)ΔAIK = ΔAIH (ch-cgv)

\(\Rightarrow\)IAK = IAH (2 góc tương ứng)

\(\Rightarrow\)AI là phân giác BAC

9 tháng 2 2020

a) Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)

=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân).

Hay \(\widehat{KBC}=\widehat{HCB}.\)

Xét 2 \(\Delta\) vuông \(BKC\)\(CHB\) có:

\(\widehat{BKC}=\widehat{CHB}=90^0\left(gt\right)\)

Cạnh BC chung

\(\widehat{KBC}=\widehat{HCB}\left(cmt\right)\)

=> \(\Delta BKC=\Delta CHB\) (cạnh huyền - góc nhọn).

=> \(BK=CH\) (2 cạnh tương ứng).

b) Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)

=> \(AB=AC\) (tính chất tam giác cân).

Xét 2 \(\Delta\) vuông \(ABH\)\(ACK\) có:

\(\widehat{AHB}=\widehat{AKC}=90^0\left(gt\right)\)

\(AB=AC\left(cmt\right)\)

\(\widehat{A}\) chung

=> \(\Delta ABH=\Delta ACK\) (cạnh huyền - góc nhọn).

=> \(AH=AK\) (2 cạnh tương ứng).

=> \(\Delta AKH\) cân tại A.

c) Theo câu b) ta có \(\Delta ABH=\Delta ACK.\)

=> \(\widehat{ABH}=\widehat{ACK}\) (2 góc tương ứng).

Hay \(\widehat{ABI}=\widehat{ACI}.\)

Xét 2 \(\Delta\) \(ABI\)\(ACI\) có:

\(AB=AC\left(cmt\right)\)

\(\widehat{ABI}=\widehat{ACI}\left(cmt\right)\)

Cạnh AI chung

=> \(\Delta ABI=\Delta ACI\left(c-g-c\right)\)

=> \(\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng).

=> \(AI\) là tia phân giác của \(\widehat{BAC}\left(đpcm\right).\)

Chúc bạn học tốt!