Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AK = 1212 AB
IC = 1212 DC
mà AB = DC (vì ABCD là hình bình hành)
=> AK = IC
=> AK // IC (vì AB // DC)
=> AKCI là hình bình hành
=> AI // KC
b) Xét ΔABMΔABM có:
AK = KB (gt)
AM // KN (vì AI // KC)
=> BN = MN (1)
Xét ΔDNCΔDNC có:
DI = IC (gt)
IM // CN (vì AI // KC)
=> DM = MN (2)
Từ 1 và 2 =>DM=MN=NB
a ) AK = 1/2 AB
CI = 1/2 CD
Mà AB //= CD nên AK //= CI suy ra
AKCI - hình bình hành
Nên AI // CK
b ) Xét t/g DNC có :
I là trung điểm CD mà IM // NC
=> IM là đường trung bình của t/g DNC
=> MD = MN ( 1 )
Xét t/g ABM có :
K là trung điểm AB mà KN // AM
=> KN là đường trung bình của t/g ABM ( 2 )
Từ ( 1 ) ; ( 2 ) suy ra DM = MN = NB
a: Xét ΔABD có M,Q lần lượt là trung điểm của AB,AD
=>MQ là đường trung bình
=>MQ//BD và MQ=BD/2
Xét ΔCBD có
P,N lần lượt là trung điểm của CD,CB
=>PN là đường trung bình
=>PN//BD và PN=BD/2
=>MQ//PN và MQ=PN
Xét tứ giác MNPQ có
MQ//PN
MQ=PN
=>MNPQ là hình bình hành
Xét ΔCAB có
I,N lần lượt là trung điểm của CA,CB
=>IN là đường trung bình
=>IN//AB và IN=AB/2
Xét ΔDAB có K,Q lần lượt là trung điểm của DB,DA
=>KQ là đường trung bình
=>KQ//AB và KQ=AB/2
=>IN//KQ và IN=KQ
=>INKQ là hình bình hành
b: MNPQ là hình bình hành
=>MP cắt NQ tại trung điểm của mỗi đường(1)
INKQ là hình bình hành
=>IK cắt NQ tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra MP,NQ,IK đồng quy