các bạn ơi giúp mình với chiều là mình phải nộp bài rồi các bạn à , mình sẽ cho các bạn mỗi ngày 3 tick trong một tuần
1) chứng tỏ
a) ab+ba chia hết cho 11
b) ab-ba chia hết cho 9
2) chứng tỏ
a) nếu ( ab+ cd ) chia hết cho 99 thì abcd chia hết cho 99
b) nếu ( abc + def ) chia hết cho 37 thì abcdef chia hết cho 37
3) chứng tỏ
a) A = 1+ 3 + 32 + ...... + 3 1998 + 3 1999 + 3 2000 chia hết cho 13
b) B = 1 + 4 + 4 2 + ...... + 42010 + 2 2011 + 22012 chia hết cho 21
Bài 1
a/ \(ab+ba=10a+b+10b+a=11a+11b=11\left(a+b\right)\) chia hết cho 11
b/ \(ab-ba=10a+b-10b-a=9a-9b=9\left(a-b\right)\) chia hết cho 9
Bài 2
a/ \(\overline{abcd}=100.\overline{ab}+\overline{cd}=100.\overline{ab}+100.\overline{cd}-99.\overline{cd}=100\left(\overline{ab}+\overline{cd}\right)-99.\overline{cd}\)
Ta có \(\overline{ab}+\overline{cd}\) chia hết cho 99 \(\Rightarrow100\left(\overline{ab}+\overline{cd}\right)\) chia hết cho 99 và \(99.\overline{cd}\) chia hết cho 99 \(\Rightarrow100\left(\overline{ab}+\overline{cd}\right)-99.\overline{cd}\) chia hết cho 99 nên \(\overline{abcd}\) chia hết cho 99
b/ \(\overline{abcdef}=1000.\overline{abc}+\overline{def}=999.\overline{abc}+\left(\overline{abc}+\overline{def}\right)=27.37.\overline{abc}+\left(\overline{abc}+\overline{def}\right)\)
\(\Rightarrow\overline{abcdef}\) chia heets cho 37
Bài 3
a/ \(A=\left(1+3+3^2\right)+...+3^{1998}\left(1+3+3^2\right)=13.\left(1+...+3^{1998}\right)\) chia hết cho 13
b/ \(B=\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)=21.\left(1+...+4^{2010}\right)\) chia hết cho 21