Cho hình chữ nhật ABCD có AB=4,5cm, BC=6cm. Kẻ BH ⊥ AC tại H, tia BH cắt AD ở E. a)Tính AC, AH và số đo góc BAC b)Chứng minh AH.AC=BH.BE c)Kẻ EF ⊥ BC tại F. Tính diện tích ΔBHF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại B
=>\(BA^2+BC^2=AC^2\)
=>\(AC^2=4^2+3^2=25\)
=>AC=5(cm)
Xét ΔBAC vuông tại B có BH là đường cao
nên \(BH\cdot AC=BA\cdot BC\)
=>BH*5=3*4=12
=>BH=2,4(cm)
Xét ΔBAC vuông tại B có
\(sinBAC=\dfrac{BC}{AC}=\dfrac{3}{5}\)
=>\(\widehat{BAC}\simeq37^0\)
b: Xét ΔABE vuông tại A có AH là đường cao
nên \(BH\cdot BE=BA^2\)(1)
Xét ΔABC vuông tại B có BH là đường cao
nên \(AH\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BE=AH\cdot AC\)
c: Xét ΔBHC vuông tại H và ΔBFE vuông tại F có
\(\widehat{HBC}\) chung
Do đó: ΔBHC\(\sim\)ΔBFE
=>\(\dfrac{BH}{BF}=\dfrac{BC}{BE}\)
=>\(\dfrac{BH}{BC}=\dfrac{BF}{BE}\)
Xét ΔBHF và ΔBCE có
BH/BC=BF/BE
\(\widehat{HBF}\) chung
Do đó: ΔBHF\(\sim\)ΔBCE
3) Xét tam giác vuông BHC và tam giác vuôn BFE có: ^B chung
=> Tam giác BHC ~ Tam giác BFE
=> \(\frac{BH}{BF}=\frac{BC}{BE}\)
=.> \(\frac{BH}{BC}=\frac{BF}{BE}\)
Xét tam giác BHF và tam giác BCE có:
góc B chung
\(\frac{BH}{BC}=\frac{BF}{BE}\)( chứng minh trên)
=> Tam giác BHF ~ tam giác BCE
4.
Vì \(\frac{BH}{BC}=\frac{BF}{BE}\)=> \(BC.BF=BH.BE=CD^2=4^2=16\)
=> \(BF=16:BC=16:3=\frac{16}{3}\)(cm)
=> \(S_{BFE}=\frac{1}{2}.BF.EF=\frac{16}{3}.4=\frac{64}{3}\)(cm^2)
Tam giác BFE Vuông tại F. Áp dụng định lí Pitago
=> \(BE^2=BF^2+EF^2=\left(\frac{16}{3}\right)^2+4^2=\frac{400}{9}\Rightarrow BE=\frac{20}{3}\)(cm)
Theo câu a đã tính được \(BH=\frac{12}{5}\)(cm)
Xét tam giác BEF và Tam giác BHF có chung đường cao hạ từ F
=> Có tỉ số \(\frac{S_{BHF}}{S_{BEF}}=\frac{BH}{BE}=\frac{\frac{12}{5}}{\frac{20}{3}}=\frac{9}{25}\)
=> \(S_{BHF}=\frac{9}{25}.S_{BEF}=\frac{9}{25}.\frac{64}{3}=\frac{192}{25}\)(cm^2)
Cho hình vuông ABCD . Trên cạnh BA và BC lấy hai điểm P và Q sao cho BP = BQ . Kẻ BH vuông góc với PC . CM :
a) Tam giác BHP đồng dạng với tam giác CHB
b) BH/BQ=CH/CD
c) Tam giác DHC đồng dạng với tam giác QHB
d) Góc DHQ = 90O