K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2019

chịch ko

a: Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

=>CD\(\perp\)AB tại D

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó;ΔBEC vuông tại E

=>BE\(\perp\)AC tại E

Xét ΔABC có

BE,CD là các đường cao

BE cắt CD tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại F

Xét tứ giác HECF có \(\widehat{HEC}+\widehat{HFC}=90^0+90^0=180^0\)

nên HECF là tứ giác nội tiếp

=>\(\widehat{HEF}=\widehat{HCF}\)

31 tháng 1

Bạn giúp mình phần vẽ hình được không ạ ?

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

góc EAH+góc ACB=90 độ

góc EBC+góc ACB=90 độ

=>góc EAH=góc EBC

b: AK cắt EF tại M

AK cắt BC tại N

AH cắt (O) tại K

=>HM//AB và QN//AB

=>HM//QN

a) Xét (O) có 

ΔDBC nội tiếp đường tròn(D,B,C∈(O))

BC là đường kính(gt)

Do đó: ΔDBC vuông tại D(Định lí)

⇒CD⊥BD tại D

⇒CD⊥AB tại D

⇒HD⊥AD tại D

Xét ΔADH có HD⊥AD tại D(cmt)

nên ΔADH vuông tại D(Định nghĩa tam giác vuông)

Ta có: ΔADH vuông tại D(cmt)

mà DI là đường trung tuyến ứng với cạnh huyền AH(I là trung điểm của AH)

nên \(DI=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)

Xét (O) có

ΔBEC nội tiếp đường tròn(B,E,C∈(O))

BC là đường kính(gt)

Do đó: ΔBEC vuông tại E(Định lí)

⇒BE⊥CE tại E

⇒BE⊥AC tại E

⇒HE⊥AE tại E

Xét ΔAEH có AE⊥EH tại E(cmt)

nên ΔAEH vuông tại E(Định nghĩa tam giác vuông)

Ta có: ΔAEH vuông tại E(cmt)

mà EI là đường trung tuyến ứng với cạnh huyền AH(I là trung điểm của AH)

nên \(EI=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Từ (1) và (2) suy ra ID=IE

hay I nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: OD=OE(=R)

nên O nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(4)

Từ (3) và (4) suy ra OI là đường trung trực của DE

hay OI⊥DE(đpcm)

I là điểm nào ạ?