đổi ra lũy thừa a x b x a x b x a x b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
(\(x-12\))80 + (y + 15)40 = 0
Vì (\(x-12\))80 ≥ 0 ∀ \(x\); (y + 15)40 ≥ 0 ∀ y
Vậy (\(x-12\))80 + (y + 15)40 = 0
⇔ \(\left\{{}\begin{matrix}x-12=0\\y+15=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=12\\y=-15\end{matrix}\right.\)
Vậy \(\left(x;y\right)\) = (12; -15)
Bài 2:
\(\dfrac{x}{y}\) = \(\dfrac{a}{b}\) (đk \(y;b\ne0\))
⇒ \(\dfrac{x}{a}\) = \(\dfrac{y}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{a}\) = \(\dfrac{y}{b}\) = \(\dfrac{x-y}{a-b}\)
⇒ \(\dfrac{x}{a}\) = \(\dfrac{x-y}{a-b}\)
⇒ \(\dfrac{x-y}{x}\) = \(\dfrac{a-b}{a}\) (đpcm)
a) 2x . 4 = 128
2x = 128 : 4
2x = 32
x = 32 : 2
x = 16
b)x . 17 = x
=> x = 0
Câu 3. Kết quả được viết dưới một dạng lũy thừa là: đáp án C
A.am.n. B.( a + a)m.n. C.am+n. D.(a .a)m.n.
Câu 5. Phân tích số ra thừa số nguyên tố ta được kết quả đúng là:Đáp án B
A.2 x 4 x 5. B.23 x 5. C.5 x 8. D.4 x 10.
Câu 1:
Ta có: \(\left\{{}\begin{matrix}\left(x-12\right)^{80}\ge0\\\left(y+15\right)^{40}\ge0\end{matrix}\right.\Rightarrow\left(x-12\right)^{80}+\left(y+15\right)^{40}\ge0\)
Mà \(\left(x-12\right)^{80}+\left(y+15\right)^{40}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-12\right)^{80}=0\\\left(y+15\right)^{40}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-12=0\\y+15=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=12\\y=-15\end{matrix}\right.\)
Vậy \(x=12;y=-15\)
Câu 2:
Giải:
Đặt \(\dfrac{x}{y}=\dfrac{a}{b}=k\Rightarrow\left\{{}\begin{matrix}x=yk\\a=bk\end{matrix}\right.\)
Ta có: \(\dfrac{x-y}{x}=\dfrac{yk-y}{yk}=\dfrac{y\left(k-1\right)}{yk}=\dfrac{k-1}{k}\) (1)
\(\dfrac{a-b}{a}=\dfrac{bk-b}{bk}=\dfrac{b\left(k-1\right)}{bk}=\dfrac{k-1}{k}\) (2)
Từ (1), (2) \(\Rightarrow\dfrac{x-y}{x}=\dfrac{a-b}{a}\left(đpcm\right)\)
Câu 3:
Ta có: \(3^{400}=\left(3^4\right)^{100}=81^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Vì \(81^{100}>8^{100}\Rightarrow3^{400}>2^{300}\)
Vậy...
1) Ta có: do 80 va 40 là số chẵn nên
(x – 12)^80 lớn hơn hoặc bằng 0
(y + 15)^40 lớn hươn hoặc bằng 0
Vậy tổng bằng 0 khi và chỉ khi : x-12 = y+15 = 0 <=> x = 12 va y = -15.
2) Đề sai bạn ạ: Phải viết (x – y)/x = (a – b)/a mới đúng
Từ gt: y/x = b/a => (x – y)/x = (a – b)/a ( theo tính chất của tỉ lệ thức )
3) Ta có
3^400 = (3^4)^100) = 81^100
2^300 = (2^3)^100 = 8^100
Vì 81^100>8^100 nên 3^400 > 2^300
\(a,A\left(x\right)=2x^3-3x^2+2x+1\\ B\left(x\right)=3x^3+2x^2-x-5\\ b,A\left(x\right)+B\left(x\right)=\left(2x^3+3x^3\right)+\left(2x^2-3x^2\right)+\left(2x-x\right)+\left(1-5\right)=5x^3-x^2+x-4\\ A\left(x\right)-B\left(x\right)=\left(2x^3-3x^3\right)+\left(-3x^2-2x^2\right)+\left(2x+x\right)+\left(1-5\right)=-x^3-5x^2+3x-4\)
a) \(x^{16}=x^{10}\cdot x^6\)
b) \(x^{16}=\left(x^4\right)^4\)
c) \(x^{16}=x^{20}\div x^4\)
\(a\times b\times a\times b\)\(\times a\times b\)
\(=a^3\times b^3\)
@Cỏ
#Forever
Trả lời :
\(a\times b\times a\times b\times a\times b\)
\(=a^3\times b^3\)
~ HT ~