K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2019

a) Ta có:

\(36^{36}-9^{10}⋮9\) vì các số hạng đều chia hết cho 9.

Mặt khác:

\(36^{36}\) có tận cùng là \(6.\)

\(9^{10}=\left(9^2\right)^5=81^5\) có tận cùng là \(1.\)

\(\Rightarrow36^{36}-9^{10}\) có tận cùng là \(6-1=5\)

\(\Rightarrow36^{36}-9^{10}⋮5\)

\(5\)\(9\) là 2 số nguyên tố cùng nhau.

\(\Rightarrow36^{36}-9^{10}⋮45\left(đpcm\right).\)

Chúc em học tốt!

1 tháng 10 2019

Violympic toán 7

30 tháng 3 2017

a) Ta có:

\(8^9+7^9+6^9+...+1^9\)

\(=\left(8^3+7^3+6^3+...+1^3\right)^2\)

\(=\left(\left(8+7+6+...+2+1\right)^2\right)^2\)

\(=\left(8+7+6+...+2+1\right)^4\)

\(=36^4=9^4.4^4\)

\(9^{10}=9^4.9^6\)

\(\Rightarrow9^4.9^6>9^4.4^4\)

Vậy \(9^{10}>8^9+7^9+6^9+...+1^9\)

b) \(45=5.9\)

Ta có:

\(\left\{{}\begin{matrix}36⋮9\\9⋮9\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}36^{36}⋮9\\9^{10}⋮9\end{matrix}\right.\)\(\Rightarrow\left(36^{36}-9^{10}\right)⋮9\)

Lại có:

\(36\div5\)\(1\)

\(9\div5\)\(1\)

\(\Rightarrow\left(36^{36}-9^{10}\right)⋮5\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)\(\left(9;5\right)=1\)

\(\Rightarrow\left(36^{36}-9^{10}\right)⋮45\) (Đpcm)

30 tháng 3 2017

mình ko hiểu cái chỗ từ (1),(2) và (9;5)=1

bạn giải thích lại đc ko

10 tháng 2 2017

Ta có:

\(8^9+7^9+6^9+5^9+...+2^9+1^9\)

\(=\left(8^3+7^3+6^3+5^3+...+2^3+1^3\right)^2\)

\(=\left(\left(8+7+6+5+...+2+1\right)^2\right)^2\)

\(=\left(8+7+6+5+...+2+1\right)^4\)

\(=36^4\)

\(=9^4.4^4\)

\(9^{10}=9^4.9^6\)

\(9^4.9^6>9^4.4^4\)

\(\Rightarrow9^{10}>8^9+7^9+6^9+5^9+...+2^9+1^9\)

10 tháng 2 2017

thank you?vui

25 tháng 12 2017

Đặt \(A=36^{36}-9^{10}\)

\(\left\{{}\begin{matrix}36^{36}⋮9\\9^{10}⋮9\end{matrix}\right.\Rightarrow A=36^{36}-9^{10}⋮9\)

\(36\equiv1\left(mod5\right)\\ \Rightarrow36^{36}\equiv1\left(mod5\right)\\ 9\equiv-1\left(mod5\right)\\ \Rightarrow9^{10}\equiv1\left(mod5\right)\\ \Rightarrow A=36^{36}-9^{10}\equiv0\left(mod5\right)\\ \Rightarrow A⋮5\)

(5;9)=1 => A chia hết 45

1 tháng 1 2020

\(36^{36}-9^{10}⋮9\) vì các số hạng đều chia hết cho 9 .

Mặt khác :

36 có tận cùng là 6

\(9^{10}=\left(9^2\right)^5=81^5\) có tận cùng là 1

\(36^{36}-9^{10}\) có tận cùng là 6 - 1 = 5

\(36^{36}-9^{10}\) chia hết cho 5

Mà (5 ; 9 ) = 1

 \(36^{36}-9^{10}⋮45\)

18 tháng 9 2016

Ta có :

\(36^{36}-9^{10}⋮9\) vì các số hạng đều chia hết cho 9 .

Mặt khác :

\(36^{36}\) có tận cùng là 6

\(9^{10}=\left(9^2\right)^5=81^5\) có tận cùng là 1

\(\Rightarrow36^{36}-9^{10}\) có tận cùng là 6 - 1 = 5

\(\Rightarrow36^{36}-9^{10}\) chia hết cho 5

Mà (5 ; 9 ) = 1

\(\Rightarrow36^{36}-9^{10}\) chia hết cho 45

18 tháng 9 2016

36^36-9^10

= (45-9)^36-9^10 
= 45m+9^36-9^10 
= 45m +9^10*(9^26-1) 
= 45m +9^10*(81^13-1) 
= 45m+9^10* 10k {do 81^13 tân cùng là 1=>( 81^13-1) chia hết cho 10} 
= 45m+90n =45(m+2n) chia hết cho 45

AH
Akai Haruma
Giáo viên
29 tháng 6 2024

Lời giải:

$A=36^{36}-9^{10}=4^{36}.9^{36}-9^{10}$

$=9^{10}(4^{36}.9^{26}-1)$

Hiển nhiên $9^{10}\vdots 9\Rightarrow A\vdots 9$

Lại có:

$4\equiv -1\pmod 5; 9\equiv -1\pmod 5$

$\Rightarrow 4^{36}.9^{26}\equiv (-1)^{36}(-1)^{26}\equiv 1\pmod 5$

$\Rightarrow 4^{36}.9^{26}-1\vdots 5$

$\Rightarrow A\vdots 5$

Vậy $A\vdots 5; A\vdots 9\Rightarrow A\vdots 36$