Giải phương trình: 8x2 -3x\(\sqrt{3x^2+x+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)
B=(x1+x2)^2-2x1x2
=3^2-2*(-7)
=9+14=23
C=căn (x1+x2)^2-4x1x2
=căn 3^2-4*(-7)=căn 9+28=căn 27
D=(x1^2+x2^2)^2-2(x1x2)^2
=23^2-2*(-7)^2
=23^2-2*49=431
D=9x1x2+3(x1^2+x2^2)+x1x2
=10x1x2+3*23
=69+10*(-7)=-1
=>\(\dfrac{x^2-3x+6-x^2+3x-3}{\sqrt{x^2-3x+6}-\sqrt{x^2-3x+3}}=3\)
=>căn x^2-3x+6 - căn x^2-3x+3=1
Đặt x^2-3x+3=a
=>căn a+3-căn a=1
=>a+3+a-2căn a(a+3)=1
=>2căn a(a+3)=2a+3-1=2a+2
=>căn a(a+3)=a+1
=>a^2+3a=a^2+2a+1
=>a=1
=>x^2-3x+2=0
=>x=1 hoặc x=2
a. (3x - 1)2 - (x + 3)2 = 0
\(\Leftrightarrow\left(3x-1+x+3\right)\left(3x-1-x-3\right)=0\)
\(\Leftrightarrow\left(4x+2\right)\left(2x-4\right)=0\)
\(\Leftrightarrow4x+2=0\) hoặc \(2x-4=0\)
1. \(4x+2=0\Leftrightarrow4x=-2\Leftrightarrow x=-\dfrac{1}{2}\)
2. \(2x-4=0\Leftrightarrow2x=4\Leftrightarrow x=2\)
S=\(\left\{-\dfrac{1}{2};2\right\}\)
b. \(x^3=\dfrac{x}{49}\)
\(\Leftrightarrow49x^3=x\)
\(\Leftrightarrow49x^3-x=0\)
\(\Leftrightarrow x\left(49x^2-1\right)=0\)
\(\Leftrightarrow x\left(7x+1\right)\left(7x-1\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(7x+1=0\) hoặc \(7x-1=0\)
1. x=0
2. \(7x+1=0\Leftrightarrow7x=-1\Leftrightarrow x=-\dfrac{1}{7}\)
3. \(7x-1=0\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)
bạn đăng tách cho mn cùng giúp nhé
Bài 1 :
a, \(\Leftrightarrow11-x=12-8x\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)
b, \(\Leftrightarrow2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)
\(\Leftrightarrow2x^3+8x^2+8x-8x^2=2x^3-16\Leftrightarrow x=-2\)
c, \(\Leftrightarrow3-2x=-x-4\Leftrightarrow x=7\)
d, \(\Leftrightarrow x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1\)
\(\Leftrightarrow3x^2+12x-9=3x^2+3x+1\Leftrightarrow x=\dfrac{10}{9}\)
e, \(\Leftrightarrow2x^2-x-3=2x^2+9x-5\Leftrightarrow x=5\)
f, \(\Leftrightarrow x^3-3x^2+3x-1-x^3-2x^2-x=10x-5x^2-11x-22\)
\(\Leftrightarrow-5x^2+2x-1=-5x^2-x-22\Leftrightarrow3x=-21\Leftrightarrow x=-7\)
\(ĐK:x^2-3x+5\ge0\)
Đặt \(\sqrt{x^2-3x+5}=a\ge0\)
\(PT\Leftrightarrow a+a^2-5=7\\ \Leftrightarrow a^2+a-12=0\\ \Leftrightarrow\left(a-3\right)\left(a+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=3\left(tm\right)\\a=-4\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow\sqrt{x^2-3x+5}=3\\ \Leftrightarrow x^2-3x+5=9\\ \Leftrightarrow x^2-3x-4=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
đặt \(x^2-3x=y\)
\(pt\Leftrightarrow\sqrt{y+5}+y=7\\ \Leftrightarrow\sqrt{y+5}=7-y\\ \Leftrightarrow\left\{{}\begin{matrix}y+5=\left(7-y\right)^2\\7-y\ge0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y+5=49-14y+y^2\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y^2-15y+44=0\\y\le7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(y^2-11y\right)-\left(4y-44\right)=0\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(y-11\right)\left(y-4\right)=0\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}y=4\\y=11\end{matrix}\right.\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=4\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x^2-3x=4\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x^2-3x-4=0\\y\le7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\left(x-4\right)\left(x+1\right)\\y\le7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\\y\le7\end{matrix}\right.\)
Vậy \(x\in\left\{4;-1\right\}\)