Cho tỉ lệ \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng: \(\frac{a}{a-b}=\frac{c}{c-d}\)
( Giả thiết a\(\ne\)b, c\(\ne\)d và a,b,c,d \(\ne\) 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{a}{b}=\frac{c}{d}<=>\frac{b}{a}=\frac{d}{c}\)
=>\(\frac{b}{a}-1=\frac{d}{c}-1<=>\frac{b-a}{a}=\frac{d-c}{c}<=>-1.\frac{b-a}{a}=-1.\frac{d-c}{c}\)
<=>\(\frac{a-b}{a}=\frac{c-d}{c}<=>\frac{a}{a-b}=\frac{c}{c-d}\)
\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\left(\frac{a-b}{c-d}\right)^{2013}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)
đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\)
\(\Leftrightarrow a=bk;c=dk\)
\(\frac{a}{a-b}=\frac{bk}{bk-b}\)
\(=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\)
\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
=>\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\)
=> \(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)( đpcm )
Ta có:\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Vì \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Xét VT \(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)
Xét VP \(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)
Từ (1) và (2) ->Đpcm
Đặt : \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Xét : VT :
\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(a\right)\)
Xé VP :\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(b\right)\)Từ ( a ) và ( b )=> Tỉ lệ thứ trên đúng => ĐPCM
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
1)\(VT=\frac{a}{b}=\frac{bk}{b}=k\left(1\right)\)
\(VP=\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\left(2\right)\)
Từ (1) và (2) ->Đpcm
2)\(VT=\frac{a-b}{a}=\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}=\frac{k-1}{k}\left(1\right)\)
\(VP=\frac{c-d}{c}=\frac{dk-d}{dk}=\frac{d\left(k-1\right)}{dk}=\frac{k-1}{k}\left(2\right)\)
Từ (1) và (2) ->Đpcm
Hướng dẫn cách làm nè!
Đầu tiên làm ra nháp:
Xuất phát từ đầu bài: \(\frac{a}{b}\)=\(\frac{a+c}{b+d}\)
=> a.( b+d ) = b.( a+c ) {tích chéo}
=>ab+ad = ab+bc {phân phối}
=>ad = bc {rút gọn cùng chia cho ab}
=>\(\frac{a}{b}\)= \(\frac{c}{d}\) {tính chất của tlt}
_Đó là phần nháp, còn trình bày bạn chỉ cần chép từ dưới lên:
\(\frac{a}{b}\)=\(\frac{c}{d}\)
=> ad=bc
=> ab+ad=ab+bc
=> a.( b+d )= b. (a+c)
=> \(\frac{a}{b}\) = \(\frac{a+c}{b+d}\)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
a) Ta có:
\(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\) (1)
\(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{a+b}=\frac{c}{c+d}\)
b) Ta có:
\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\) (1)
\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{a-b}=\frac{c}{c-d}\)
c) Ta có:
\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
a,Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)\(\Rightarrowđpcm\)
b,Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)\(\Rightarrowđpcm\)
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{b}{a}=\frac{d}{c}\)
\(\Rightarrow\frac{b}{a}-1=\frac{d}{c}-1\)
\(\Rightarrow\frac{b}{a}-\frac{a}{a}=\frac{d}{c}-\frac{c}{c}.\)
\(\Rightarrow\frac{b-a}{a}=\frac{d-c}{c}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\left(đpcm\right).\)
Chúc bạn học tốt!