Bài 1. Cho △ABC: góc A=70 độ. M thuộc BC, D đối xứng M qua AB, E đối xứng với M qua AC"
a)CMR: AD=AE.
b)Tính góc DAE?
Bài 2. Cho △ABC nhọn: góc A=60 độ, trực tâm H. Gọi M là điểm đối xứng với H qua BC
a)CMR: △BHC=△BMC
b)Tính góc BMC?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự kẻ hình :
AB là đường trung trực của MD (gt)
=> AM = AD (đl) (1)
AC là đường trung trực của EM (gt)
=> AE = AM (đl) (2)
(1)(2) => AE = AD
a. Vì D đối xứng với M qua trục AB
\(\Rightarrow\) AB là đường trung trực MD.
\(\Rightarrow\) AD = AM (tính chất đường trung trực) (1)
\(\Rightarrow\) Vì E đối xứng với M qua trục AC
\(\Rightarrow\) AC là đường trung trực của ME
\(\Rightarrow\) AM = AE ( tính chất đường trung trực) (2)
\(\Rightarrow\) Từ (1) và (2) suy ra : AD = AE
b ) AD = AM suy ra \(\Delta AMD\) cân tại A có \(AB\perp MD\)
nên AB cũng là đường phân giác của góc MAD
\(\Rightarrow\widehat{A_1}=\widehat{A}_2\)
AM = AE suy ra \(\Delta AME\) cân tại A có \(AC\perp ME\) nên AC cũng là đường phân giác của \(\widehat{MAE}\)
\(\Rightarrow\widehat{A}_3=\widehat{A}_4\)
\(\widehat{DAE}=\widehat{A}_1+\widehat{A}_2+\widehat{A}_3+\widehat{A}_4\)
\(=2\left(\widehat{A}_2+\widehat{A}_3\right)=2\widehat{BAC}=2.70^o=140^o\)
Chúc bạn học tốt !!!
Bài 1
a) M đối xứng với D qua AB nên MB=BD và AB vuông góc với MD. Ta thấy Am vừa là đường trung tuyến vừa là đường trung trực nên tam giác AMD cân ở A nên AM=AD
Tương tự ta chứng minh được tam giác AEM cân ở A nên AM=AE
=>AE=AD=AM
b)Gọi I là điểm giao của AB và MD, K là giao của AC và ME
tam giác AMD cân có AB là đường trung trực nên cũng là đường phân giác của góc MAD nên góc DAB=gócBAM
tam giác MAE cũng vậy nên góc MAC=gócEAC
vậy góc DAE=góc DAB+ góc BAM + góc MAC +góc CAE= 2(góc BAM+ goc MAC)=2.70=140 độ
bài 2
a) Tương tự phần a câu 1, vì H đối xứng với M qua BC lên tam giác BHM là tam giác cân ở B nên BH=BM
và tương tự tam giác CHM cân ở C nên CM=CH
2 tam giác BHC và BMC có cạnh chung BC và 2 cạnh tương ứng bằng nhau(BH=BM,CH=CM) nên là tam giác bằng nhau
b)H là trực tâm lên HA=HC nên góc HAC=góc HCA, tương tự HA=HB nên góc HAB=góc HBA=> góc HCA+góc HBA= góc HAC+ góc HAB=60
xét tam giác ABC
góc BAC+ (góc HCA+góc HCB)+(góc HBA+góc HBC)=180 =>góc HCB+ góc HBC= 60=> góc BHC=180-60=120
tam giác BHC bằng tam giác BMC nên góc BMC=góc BHC= 120