K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2021

\(AC=\sqrt{BC^2-AB^2}=4\left(cm\right)\left(pytago\right)\\ \Leftrightarrow S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot4\cdot3=6\left(cm^2\right)\)

2 tháng 11 2021

Xét tam giác ABC vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.3.4=6\left(cm^2\right)\)

8 tháng 2 2022

Áp dụng định lí Pytago vào tam giác ABC vuông tại A, ta có:

\(AC=\sqrt{BC^2-AB^2}=\sqrt{100-36}=\sqrt{64}=8cm\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AB.AC\)

\(\Rightarrow AH.BC=AB.AC\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=\dfrac{24}{5}=4,8cm\)

8 tháng 2 2022

a, Theo định lí Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=\sqrt{100-36}=8cm\)

b, Xét tam giác ABH và tam giác CBA có : 

^B _ chung 

^BAH = ^BCA ( cùng phụ ^HAC ) 

Vậy tam giác ABH ~ tam giác CBA ( g.g ) 

=> AH/AC = AB/BC => AH = 6.8:10 = 4,8 cm 

19 tháng 9 2021

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)

23 tháng 8 2017

bn đặt AC=x rồi dùng Hê-rông(cách củ chuối)

23 tháng 8 2017

để Smax thì chắc là khi tam giác ABC vuông

20 tháng 11 2016

Áp dụng định lý Py - ta -go vào tam giác vuông ABC , ta có :

AC^2 = BC^2 - AB^2 = 10^2 - 6^2 = 64

-> AC = 8 (cm)

Diện tích tam giác ABC bằng :

1/2.AB.AC = 1/2.6.8 = 24 (cm^2)

Vậy diện tích tam giác ABC bằng 24 cm^2

20 tháng 11 2016

bạn hoc o truong nao zayok