K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2015

\(n^{200}<5^{300}=>\left(n^2\right)^{100}<\left(5^3\right)^{100}=>n^2<5^3=125=>n^2\in\left\{0;4;9;...;121\right\}\)

mà n lớn nhất nên n^2=121=>n=11

tick nhé

1 tháng 4 2017

19 tháng 3 2017

AH
Akai Haruma
Giáo viên
19 tháng 4 2021

Lời giải:

Vì $m,n$ nguyên tố cùng nhau, $m+n=90$ chẵn nên $m,n$ là hai số lẻ phân biệt.

Không mất tổng quát giả sử $m>n$.

$90=m+n>2n\Rightarrow n< 45$. Vì $n$ lẻ nên $n\leq 43$.

Có:

$mn=(90-n)n=90n-n^2=n(43-n)-47(43-n)+43.47$

$=(n-47)(43-n)+2021$

Vì $n\leq 43$ nên $n-47< 0; 43-n\geq 0\Rightarrow (n-47)(43-n)\leq 0$

$\Rightarrow mn\leq 2021$. Giá trị này đạt tại $n=43, m=47$ thỏa mãn điều kiện đề.

Vậy GTLN của $mn$ là $2021$.

29 tháng 4 2018

Chọn B

25 tháng 5 2018