Cho f(x)=\(x^2+bx+c\left(b,c\in Z\right)\)biết các đa thức \(x^4+6x^2+25,3x^4+4x^2+28x+5\) đều chia hết cho f(x). Tìm b,c
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CH
Cô Hoàng Huyền
Admin
VIP
5 tháng 2 2018
Câu hỏi của Hồ Thu Giang - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
4 tháng 1 2019
Theo bài ra, ta có: \(x^4+6x^2+25⋮P\left(x\right)< =>3\left(x^4+6x^2+25\right)⋮P\left(x\right)\)
Lại có: \(3x^4+4x^2+28x+5⋮P\left(x\right)\)
Suy ra: \(3\left(x^4+6x^2+25\right)-\left(3x^4+4x^2+28x+5\right)⋮P\left(x\right)\)
\(< =>3x^4+18x^2+75-3x^4-4x^2-28x-5⋮P\left(x\right)\)
\(< =>14x^4-28x+70⋮P\left(x\right)\)
\(< =>14\left(x^4-2x+5\right)⋮P\left(x\right)\)
\(< =>x^4-2x+5⋮P\left(x\right)\)
Hay \(x^4-2x+5⋮x^2+bx+c\)
Mà b, c là các số nguyên nên để \(x^4-2x+5⋮x^2+bx+c\) thì: b=-2, c=5.
Khi đó, \(P\left(1\right)=1^2-2.1+5=1-2+5=4\)
Vậy P(1)=4.
Chúc bạn học tốt!