Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài, ta có:
Vì \(x^4+6x^2+25\) chia hết cho \(P\left(x\right)\) \(\Rightarrow\) \(3\left(x^4+6x^2+25\right)\) chia hết cho \(P\left(x\right)\)
và \(3x^4+4x^2+28x+5\) chia hết cho \(P\left(x\right)\)
nên \(\left[3\left(x^4+6x^2+25\right)-\left(3x^4+4x^2+28x+5\right)\right]\) chia hết cho \(P\left(x\right)\)
\(\Leftrightarrow\) \(\left(3x^4+18x^2+75-3x^4-4x^2-28x-5\right)\) chia hết cho \(P\left(x\right)\)
\(\Leftrightarrow\) \(14x^2-28x+70\) chia hết cho \(P\left(x\right)\)
\(\Leftrightarrow\) \(x^4-2x+5\) chia hết cho \(P\left(x\right)\), tức \(x^4-2x+5\) chia hết cho \(x^2+bx+c\) \(\left(\text{*}\right)\)
Mà \(b;\) \(c\) là các số nguyên nên từ \(\left(\text{*}\right)\), suy ra \(b=-2;\) \(c=5\)
Khi đó, \(P\left(1\right)=1^2-2.1+5=4\)