K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2019

xét n=0 => không thỏa mãn;n=1 => thỏa mãn; 

xét n\(\ge2\)

với n là số chẵn thì 

19n+1n=(19+1)(19n-1  - 19n-2  +... - 1)+ 2.1n = 20A + 2

18n +2n = (18+2)(18n-1-  18n-2.2 +  18n-3.22  - ... -  2n-1) + 2.2n = 20B +2.2n

=> để 20A +2 +20B+ 2.22n chia hết cho 5 thì 2.2n +2 chia hết cho 5 hay 2n +1 chia hết cho 5

n chẵn nên sẽ có dạng n= 2k (k\(\in N;k\ge1\)) => 2n +1 = 22k +1 = 4k +1

4k chỉ có chữ số tận cùng là 4 hoặc 6

với k chẵn thì 4k tận cùng là 6 nên 4k +1 không chia hết cho 5 (loại)

với k lẻ; k có dạng k = 2x+1 (\(x\in N;x\ge0\)) thì 4k tận cùng là 4 nên 4k +1 tận cùng là 5 ( thỏa mãn chia hết cho 5)  => n = 2k =2(2x+ 1) = 4x + 2 (x\(\in N;x\ge0\)) thỏa mãn

xét n là số lẻ; n =2k +1 (k\(\in Z;k\ge1\)) thì 19n+1n + 18n + 2n = (19+1)(19n-1- 19n-2  +...+ 1) + (18+2)(18n-1 -  18n-2.2 +...+  2n-1)

=20U +20V chia hết cho 5

vậy với mọi n là số lẻ hoặc n = 4x +2(x \(\in N;x\ge1\)) đều thỏa mãn

27 tháng 9 2019

+) 18 chia 5 dư 3

=> \(18^n;3^n\) có cùng số dư khi chia cho 5.

+) 19 chia 5 dư 4

=> \(19^n;4^n\)có cùng số dư khi chia cho 5

=> \(1^n+2^n+18^n+19^n\)chia hết cho 5 khi và chỉ khi \(1^n+2^n+3^n+4^n\) chia hết cho 5

+) Chúng ta đi tìm n bằng cách quy nạp:

Với n = 0 ta có: \(1^0+2^0+3^0+4^0=4⋮̸5\)

Với n = 1 ta có: \(1^1+2^1+3^1+4^1=10⋮5\)

Với n = 2 ta có: \(1^2+2^2+3^2+4^2=30⋮5\)

Với n = 3 ta có: \(1^3+2^3+3^3+4^3=100⋮5\)

Với n = 4 ta có: \(1^4+2^4+3^4+4^4=354⋮̸5\)

Với n = 5 ta có: \(1^5+2^5+3^3+4^3=1300⋮5\)

...

Từ điều trên chúng ta có nhận xét rằng, Các số n không chia hết cho 4 thì \(1^n+2^n+3^n+4^n\)chia hết cho 5.

+) Chứng minh: Xét n với 4 dạng : n = 4k; n= 4k+1 ; n= 4k+2; n= 4k +3 ( với k là số tự nhiên)

(i) Với n = 4k ta có: 

Vì \(1^k\)chia 5 dư 1; \(16^k\)chia 5 dư 1; \(81^k\)chia 5 dư 1;  \(256^k\)chia 5 dư 1

\(1^{4k}+2^{4k}+3^{4k}+4^{4k}=1^k+16^k+81^k+256^k\)

=> n =4k thì \(1^n+2^n+3^n+4^n\)không chia hết cho 5.

(ii) Với n = 4k + 1ta có:

Vì  \(1^k\)chia 5 dư 1; \(16^k.2\)chia 5 dư 2; \(81^k.3\)chia 5 dư 3; \(256^k.4\) chia 5 dư 4.

=> \(1^{4k+1}+2^{4k+1}+3^{4k+1}+4^{4k+1}=1^k+16^k.2+81^k.3+256^k.4\) chia 5 dư 10 => chia hết 5

=>  n =4k +1 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.

(iii)  Với n = 4k + 2  ta có:

Vì  \(1^k\)chia 5 dư 1; \(16^k.4\)chia 5 dư 4; \(81^k.9\)chia 5 dư 4; \(256^k.16\) chia 5 dư 1.

=> \(1^{4k+2}+2^{4k+2}+3^{4k+2}+4^{4k+2}=1^k+16^k.4+81^k.9+256^k.16\) chia 5 dư 10 => chia hết cho 5

=>  n =4k +2 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.

(iv)  Với n = 4k + 3ta có:

Vì  \(1^k\)chia 5 dư 1; \(16^k.8\)chia 5 dư 3; \(81^k.27\)chia 5 dư 2 ; \(256^k.64\) chia 5 dư 4.

=> \(1^{4k+1}+2^{4k+3}+3^{4k+3}+4^{4k+3}=1^k+16^k.8+81^k.27+256^k.64\) chia cho 5  dư 10 => chia hết cho 5

=>  n =4k +3 thì \(1^n+2^n+3^n+4^n\) chia hết cho 5.

=> n không chia hết cho 4 thì  \(1^n+2^n+3^n+4^n\) chia hết cho 5.

Vậy suy ra  \(1^n+2^n+18^n+19^n\) chia hết cho 5 khi n không chia hết cho 4.

10 tháng 8 2019

a) Gọi ƯCLN (n.(n+1)/2,2n+3= n

=> n+ 3 : 7 

2n+ 3 chia hết cho n

=> 2 n. n+3 =7 : 3

=>3n^3 +3n : hết cho n

3n + 1 =n + 7

Nếu thế 3n + 7 ^3

n= -3 + 7n 

Vậy n = 21 

Một số tự nhiên chia hết cho n và  3

P.s: Tương tự và ko chắc :>

12 tháng 8 2019

bài này  bạn đăng lần trước rồi mà

bạn có thể vô lại để xem lại bài nhé

11 tháng 8 2019

để \(7⋮n+3\)

\(\Rightarrow n+3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

ta có bảng:

n+31-17-7
n-2-44-10

vì \(n\inℕ\)

=>\(n\in\left\{4\right\}\)

11 tháng 8 2019

b)

\(18⋮2n+1\)

\(\Rightarrow2n+1\inƯ\left(18\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm9;\pm18\right\}\)

ta có bảng

2n+11-12-23-34-46-69-918-18 
n0-1\(\frac{1}{2}\)\(\frac{-3}{2}\)1-2\(\frac{3}{2}\)\(\frac{-5}{2}\)\(\frac{5}{2}\)\(\frac{-7}{2}\)4-5\(\frac{17}{2}\)\(\frac{-19}{2}\) 

mà \(x\inℕ\)

\(\Rightarrow x\in\left\{0;4;1\right\}\)

13 tháng 5 2017

1)    a) Ta có :

15 + 7n chia hết cho n

mà n chia hết cho n

nên 7n chia hết cho n 

=> (15 + 7n ) - 7n chia hết cho n

=> 15 chia hết cho n 

=> n thuộc Ư(15) nên n = 1 ; -1 ; 3 ; -3 ; 5 ; -5 ;15 ; -15

b) Ta có :

n + 28 chia hết cho n +4

mà n+4 chia hết cho n+4

nên n+28 - (n+4) chia hết cho n+4

=> 32 chia hết cho n+4

=>n+4 thuộc Ư(32) nên n+4=-1;1;-2;2;-4;4;8;-8;16;-16;32;-32

=> n lần lượt = -5;-3;-6;-2;-8;0;4;-12;12;-20;28;-36

phần 2 dài quá vs m cx không chắc đúng nên làm phần 3 luôn

3) vì số tự nhiên chia cho 18 dư 12 có dạng là : 18k + 12 

mà 18 chia hết cho 6

và 12 chia hết cho 6

nên 18k + 12 chia hết cho 6 

Vậy không tồn tại số tự nhiên chia cho 18 dư 12 , còn chia 6 dư 2

18 tháng 9 2018

2. Vì 66a + 55b = 111 011
11.6a+11.5b=111011
11.(6a+5b) =111011
11*11ab=111011
mà 111011 không chia hết cho 11
==>Không thể tìm được a và b

12 tháng 8 2019

Để 18 chia hết 2n+1 thì

(2n+1) € U(18) = {

12 tháng 8 2019

Ta có: 18 \(⋮\)2n + 1

<=> 2n + 1 \(\in\)Ư(18) = {1; 2; 3; 6; 9; 18}

Do n \(\in\)N và 2n + 1 là số lẻ

<=> 2n + 1 \(\in\){1; 3; 9}

Với : +) 2n + 1 = 1 => 2n = 0 => n = 0

+) 2n + 1 = 3 => 2n = 2 =>n = 1

+) 2n + 1 = 9 => 2n = 8 => n = 4

Vậy ...

11 tháng 2 2018

 * n = 3k 
A = 2ⁿ - 1 = 2^3k - 1 = 8^k - 1 = (8-1)[8^(k-1) + 8^(k-2) +..+ 8 + 1] = 7p chia hết cho 7 

* n = 3k+1 
A = 2^(3k+1) -1 = 2.2^3k - 1 = 2(8^k - 1) + 1 = 2*7p + 1 chia 7 dư 1 

* n = 3k+2 
A = 2^(3k+2) -1 = 4.8^k -1 = 4(8^k - 1) + 3 = 4*7p + 3 chia 7 dư 3 

Tóm lại A = 2ⁿ -1 chia hết cho 7 khi và chỉ khi n = 3k (k nguyên dương) 

11 tháng 2 2018

câu thứ 2 đợi mình nghĩ đã nhé.

12 tháng 8 2019

a) Vì 18 chia hết cho 2n + 1

nên => 2n + 1 thuộc Ư ( 18 )

Ư ( 18 ) = { 1 ; 2 ; 3 ; 6 ; 9 ; 18 } hay 2n + 1 thuộc { 1 ; 2 ; 3 ; 6 ; 9 ; 18 }

Với 2n + 1 = 1

2n = 0 => n = 0 ( chọn )

Với 2n + 1 = 2

2n = 1 ( loại )

Với 2n + 1 = 3

2n = 2 => n = 1 ( chọn )

Với 2n + 1 = 6

2n = 5 ( loại )

Với 2n + 1 = 9

2n = 8 => n = 4 ( chọn )

Với 2n + 1 = 18

2n = 17 ( loại )

Vậy n thuộc { 0 ; 1 ; 4 }

12 tháng 8 2019

còn câu b

19 tháng 8 2016

3) Vì A = 62xy427 chia hết cho 99 => 62xy427 chia hết cho 9 và 11 

+ Do 62xy427 chia hết cho 9 => 6 + 2 + x + y + 4 + 2 + 7 cha hết cho 9 

                                             => 21 + x + y chia hết cho 9 

Mà x,y là chữ số => 0 < hoặc = x + y < hoặc = 18

                                             => x + y thuộc {6 ; 15} (1) 

+ Do 62xy427 chia hết cho 11 => (6 + x + 4 + 7) - (2 + y + 2) chia bết cho 11

                                             => (17 + x) - (4 + y) chia hết cho 11 

                                              => 13 + x - y chia hết cho 11 

Mà x, y là chữ số => -9 < hoặc = x - y < hoặc = 9 => x - y = -2 hoặc x - y = 9 

                              Nhưng nếu x - y = 9 thì x = 9; y = 0, không thỏa mãn đề bài => x - y = -2 

                                     Từ (1) mà tổng 2 số và hiệu của chúng luôn có cùng tính chẵn lẻ 

                                               => x + y = 6 => y = [6 - (-2)] : 2 = (6 + 2) : 2 = 4 

                                                                                   => x = 6 - 4 = 2

n+6 chia hết cho 3n-2

=>3n+18 chia hết cho 3n-2

=>3n-2+20 chia hết cho 3n-2

=>20 chia hết cho 3n-2

=>3n-2=-2;-1;1;2;4;5;10;20

=>3n=0;3;6;12

=>n=0;1;2;4

vậy n=0;1;2;4