Tìm n thuộc Z sao cho
a, n+3/n-2 thuộc Z b, n+7/3n-1 thuộc Z c,3n+2/4n-5 thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Để \(\frac{n+3}{n-2}\) âm => \(\frac{n+3}{n-2}<0\) mà n - 2 < n + 3 => n - 2 < 0 => n < 2
Vậy n < 2 thì \(\frac{n+3}{n-2}\) là số âm.
b/ Để \(\frac{n+7}{3n-1}\) nguyên => n + 7 chia hết cho 3n - 1
=> 3 (n + 7) chia hết cho 3n - 1
=> 3n + 21 chia hết cho 3n - 1
=> 22 chia hết cho 3n - 1
=> 3n - 1 ∈ Ư(22)
=> 3n - 1 ∈ { ±1 ; ±2 ; ±11 ; ±22 }
- Nếu 3n - 1 = 1 => 3n = 2 => n = 2/3 (ko thỏa mãn n ∈ Z)
- Nếu 3n - 1 = -1 => 3n = 0 => n = 0 (thỏa mãn)
- Nếu 3n - 1 = 2 => 3n = 3 => n = 1 (thỏa mãn)
- Nếu 3n - 1 = -2 => 3n = -1 => n = -1/3 (ko thỏa mãn n ∈ Z)
- Nếu 3n - 1 = 11 => 3n = 12 => n = 4 (thỏa mãn)
- Nếu 3n - 1 = -11 => 3n = -10 => n = -10/3 (ko thỏa mãn n ∈ Z)
- Nếu 3n - 1 = 22 => 3n = 23 => n = 23/3 (ko thỏa mãnn ∈ Z)
- Nếu 3n - 1 = -22 => 3n = -21 => n = -7 (thỏa mãn)
Vậy n ∈ { 0 ; 1 ; 4 ; -7 } thì \(\frac{n+7}{3n-1}\) là số nguyên.
c/ Để \(\frac{3n+2}{4n-5}\in N\) => 3n + 2 chia hết cho 4n - 5
=> 4 (3n + 2) chia hết cho 4n - 5
=> 12n + 8 chia hết cho 4n - 5
=> 23 chia hết cho 4n - 5
=> 4n - 5 ∈ Ư(23)
=> 4n - 5 ∈ { 1 ; 23 }
- Nếu 4n - 5 = 1 => 4n = 6 => n = 3/2 (ko thoả mãn n ∈ Z)
- Nếu 4n - 5 = 23 => 4n = 28 => n = 7 (thỏa mãn)
Vậy n = 7 thì \(\frac{3n+2}{4n-5}\in N\)
d) Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(\Leftrightarrow1⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2n\in\left\{0;-2\right\}\)
hay \(n\in\left\{0;-1\right\}\)
Mk trả lời mỗi câu khó nha!!!
d*) \(\dfrac{n+1}{2n+1}\in Z\)
Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(n+1⋮2n+1\)
\(\Rightarrow2.\left(n+1\right)⋮2n+1\)
\(\Rightarrow2n+2⋮2n+1\)
\(\Rightarrow2n+1+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
2n+1 | -1 | 1 |
n | -1 | 0 |
Vậy \(n\in\left\{-1;0\right\}\)
a ) Để \(\frac{n+3}{n-2}\) là số nguyên âm <=> n + 3 chia hết cho n - 2
<=> n - 2 + 5 chia hết cho n - 2
<=> 5 chia hết cho n - 2
<=> n - 2 thuộc Ư ( 5 )
Ư ( 5 ) = { + 1 ; + 5 }
n - 2 | 1 | - 1 | 5 | - 5 |
n | 3 | 1 | 7 | - 3 |
\(\frac{n+3}{n-2}\) | 6/1 | 4/-1 | 10/5 | 0 |
Vậy để n + 3 / n - 2 là số âm thì n = 1
Câu b và c làm tương tự
a, vì \(\frac{3n-1}{7n+5}\)thuộc Z suy ra : 3n - 1 chia hết cho 7n +5 => 7.( 3n - 1 ) chia hết cho 7n + 5
=> 21n - 7 chia hết cho 7n + 5 => 21n + 15 - 22 chia hết cho 7n + 5 => 3.( 7n + 5) - 22 chia hết cho 7n + 5
=> - 22 chia hết cho 7n + 5 ( vì 3.( 7n+ 5) chia hết cho 7n + 5 ) .
=> 7n + 5 là Ư(-22) = { -22, -11 , -2 ; -1; 1, 2, 11, 22 } đến đây dễ rồi bạn tự làm tiếp nhé.
b,vì \(\frac{n^{2014}+n^{2013}+2}{n+1}.\)thuộc Z nên ta có : \(n^{2014}+n^{2013}+2\)chia hết cho n + 1
=> \(n^{2013}\left(n+1\right)+2\)chia hết cho n +1
=> 2 chia hết cho n + 1 ( vì \(n^{2013}\left(n+1\right)\)chia hết cho n + 1 )
=> n + 1 là Ư(2) ={- 2; -1 ; 1; 2 } đến đây bạn tự làm tiếp nhé !
a/
Với $n$ nguyên, để $\frac{-18}{n}$ là số nguyên thì $n$ là ước của $-18$
$\Rightarrow n\in \left\{\pm 1; \pm 2; \pm 3; \pm 6; \pm 9; \pm 18\right\}$
b.
Với $n$ nguyên, để $\frac{n+7}{3n-1}$ nguyên thì:
$n+7\vdots 3n-1$
$\Rightarrow 3(n+7)\vdots 3n-1$
$\Rightarrow (3n-1)+22\vdots 3n-1$
$\Rightarrow 22\vdots 3n-1$
$\Rightarrow 3n-1\in\left\{\pm 1; \pm 2; \pm 11; \pm 22\right\}$
$\Rightarrow n\in \left\{\frac{2}{3}; 0; 1; \frac{-1}{3}; 4; \frac{-10}{3}; \frac{23}{3}; -7\right\}$
Do $n$ nguyên nên $n\in\left\{0; 1; 4; -7\right\}$
a/
Với $n$ nguyên, để $\frac{-18}{n}$ là số nguyên thì $n$ là ước của $-18$
$\Rightarrow n\in \left\{\pm 1; \pm 2; \pm 3; \pm 6; \pm 9; \pm 18\right\}$
b.
Với $n$ nguyên, để $\frac{n+7}{3n-1}$ nguyên thì:
$n+7\vdots 3n-1$
$\Rightarrow 3(n+7)\vdots 3n-1$
$\Rightarrow (3n-1)+22\vdots 3n-1$
$\Rightarrow 22\vdots 3n-1$
$\Rightarrow 3n-1\in\left\{\pm 1; \pm 2; \pm 11; \pm 22\right\}$
$\Rightarrow n\in \left\{\frac{2}{3}; 0; 1; \frac{-1}{3}; 4; \frac{-10}{3}; \frac{23}{3}; -7\right\}$
Do $n$ nguyên nên $n\in\left\{0; 1; 4; -7\right\}$
a, Để n+3/n-2 thuộc Z thì n+3 phải chia hết cho n-2
Ta có :n+3=n-2+5
Để n+3 chia hết cho n-2 thì 5 chia hết cho n-2
n-2 thuộc Ư(5)=1;-1;5;-5}
-Nếu n-2=1 thì n=3
-Nếu n-2=-1 thì n=1
-Nếu n-2=5 thì n=7
-Nếu n-2=-5 thì n=-3
Vậy n thuộc {3;1;7;-3} để n+3/n-2 thuộc Z
con cau b,c