Cho 4 điểm trong mặt phẳng, trong đó không có 3 điểm nào thẳng hàng. CMR các đường tròn pedal của 1 điểm tùy ý trong chúng ứng với tam giác tạo bởi 3 đỉnh còn lại đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn 3 điểm trong 15 điểm có: \(C^3_{15}\)(cách chọn)
Chọn 3 điểm trong 6 điểm thẳng hàng có:\(C^3_6\)(cách)
=>Số tam giác được tạo thành từ 15 điểm đã cho là: \(C^3_{15}-C^3_6\)(tam giác)
Trên mặt phẳng cho n > = điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.
CMR qua mỗi điểm co không quá 5 đoạn thẳng
Gọi các đường thẳng đã cho là \(d_1;d_2;d_3;.....;d_{1992}\) và \(A_{ij}\) là giao điểm của \(d_i;d_j\) với \(i,j\in\left[1;1992\right]\)
Xét đường thẳng \(d_n\) bất kỳ trong 1992 đường thẳng trên
Do không có 3 đường nào đồng quy nên \(A_{ij}\notin d_n\)
Giả sử điểm \(A_{ij}\) gần đường thẳng \(d_n\) nhất
Ta đi chứng minh tam giác \(A_{ij}A_{ni}A_{nj}\) là tam giác xanh
Giả sử tam giác này bị một đường thẳng \(d_m\) nào đó cắt thì \(d_m\) cắt ít nhất một trong 2 đoạn \(A_{ij}A_{ni};A_{ij}A_{nj}\)
Giả sử \(d_m\) cắt \(A_{ij}A_{ni}\) tại điểm \(A_{mi}\) thì \(A_{mi}\) gần \(d_n\) nhất ( trái giả thiết )
Vậy mỗi đường thẳng \(d_n\) bất kỳ thì luôn tồn tại một tam giác xanh có cạnh nằm trên \(d_n\)
Khi đó số tam giác xanh không ít hơn \(1992:3=664\)
Tính số đường thẳng: Gọi X là tập hợp các điểm đã cho, S là tập hợp các điểm thẳng hàng và \(T=X\backslash S\). Qua 5 điểm thuộc S, ta vẽ được duy nhất 1 đường thẳng. Xét 1 điểm bất kì trong S, nó kết nối với 15 điểm không thuộc S bằng 1 đường thẳng. Tương tự với các điểm còn lại trong S, số đường thẳng nối từ các điểm thuộc S đến các điểm còn lại là \(5.15=75\) đường. Xét các điểm thuộc T, do trong các điểm thuộc T không có 3 điểm nào thẳng hàng nên số đường thẳng kết nối 15 điểm này là \(C^2_{15}\). Vậy có tất cả \(1+75+C^2_{15}=181\) đường thẳng từ 20 điểm đã cho.
Tính số tam giác: Xét 2 điểm bất kì thuộc S, có 15 tam giác được tạo thành từ 2 điểm đó và 1 điểm thuộc T. Số cách chọn 2 điểm thuộc S là \(C^2_5\), do đó số tam giác tạo thành bằng cách chọn 2 điểm thuộc S và 1 điểm thuộc T là \(C^2_5.15\). Xét 3 điểm bất kì thuộc T, có tất cả \(C^3_{15}\) tam giác. Vậy có tất cả \(C^2_5.15+C^3_{15}=605\) tam giác được tạo thành từ 20 điểm đã cho.
a, Qua điểm T1, ta nối được 34 dt
Qua điểm T2, ta nối được thêm 33 dt khác
....
Qua điểm T34, ta nối được thêm 1 dt khác.
Vậy có: 1+2+..+34=(34+1)*34:2=595(dt)
b,