K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2019

\(\text{ĐKXĐ: }x\ge0;x\ne\pm1\)

\(2\sqrt{144x+144}-3\sqrt{100x-100}=12\)

\(2\sqrt{144\left(x+1\right)}-3\sqrt{100\left(x-1\right)}=12\)

\(2\sqrt{144}.\sqrt{\left(x+1\right)}-3\sqrt{100}.\sqrt{x-1}=12\)

\(2.12\sqrt{x+1}-3.10\sqrt{x-1}=12\)

\(24\sqrt{x+1}-30\sqrt{x-1}=12\)

\(6.\left(4\sqrt{x+1}-5\sqrt{x-1}\right)=6.2\)

\(4\sqrt{x+1}-5\sqrt{x-1}=2\)

\(\text{Mk bí r}\)

2 tháng 11 2020

\(1,\left(\sqrt{45}-\sqrt{20}+\sqrt{5}\right):\sqrt{6}\)

\(=\left(\sqrt{9.5}\sqrt{4.5}+\sqrt{5}\right).\frac{1}{\sqrt{6}}\)

\(=\frac{2\sqrt{5}}{\sqrt{6}}\)

\(=\frac{\sqrt{30}}{3}\)

3 tháng 11 2020

1) \(\left(\sqrt{45}-\sqrt{20}+\sqrt{5}\right):\sqrt{6}\)

\(=\left(\sqrt{9.5}-\sqrt{4.5}+\sqrt{5}\right):\sqrt{6}\)

\(=\left(3\sqrt{5}-2\sqrt{5}+\sqrt{5}\right):\sqrt{6}\)

\(=\frac{2\sqrt{5}}{\sqrt{6}}\)

\(=\frac{2\sqrt{5}\sqrt{6}}{\sqrt{6}.\sqrt{6}}\)

\(=\frac{2\sqrt{30}}{6}\)

\(=\frac{\sqrt{30}}{3}\)

C = \(\frac{2}{3}\sqrt{144}-\left(-\frac{3}{4}\right)\div\sqrt{\frac{225}{144}}\)

C = \(\frac{2}{3}.12+\frac{3}{4}\div\frac{5}{4}\)

C = \(8+\frac{3}{5}\)

C = \(8\frac{3}{5}\)

D = \(\frac{4^6.25^5-2^{12}.25^4}{2^{12}.5^8-10^8.64}\)

D = \(\frac{\left(2^2\right)^6.\left(5^2\right)^5-2^{12}.\left(5^2\right)^4}{2^{12}.5^8-\left(2.5\right)^8.2^6}\)

D = \(\frac{2^{12}.5^{10}-2^{12}.5^8}{2^{12}.5^8-2^8.5^8.2^6}\)

D = \(\frac{2^{12}.5^8.\left(25-1\right)}{2^{12}.5^8.\left(1-2^2\right)}\)

D = \(\frac{24}{-3}\)

D = \(-8\)

18 tháng 10 2018

\(C=\frac{2}{3}\sqrt{144}-\left(\frac{-3}{4}\right):\sqrt{\frac{225}{144}}\)

\(=\frac{2}{3}\cdot12+\frac{3}{4}:\frac{5}{4}\)

\(=8+\frac{3}{4}\cdot\frac{4}{5}\)

\(=8+\frac{3}{5}\)

\(=\frac{40}{5}+\frac{3}{4}=\frac{43}{5}\)

\(D=\frac{4^6\cdot25^5-2^{12}\cdot25^4}{2^{12}\cdot5^8-10^8\cdot64}=\frac{\left(2^2\right)^6\cdot\left(5^2\right)^5-2^{12}\cdot\left(5^2\right)^4}{2^{12}\cdot5^8-\left(2\cdot5\right)^8\cdot2^6}\)

\(=\frac{2^{12}\cdot5^{10}-2^{12}\cdot5^8}{2^{12}\cdot5^8-2^{14}\cdot5^8}=\frac{5^8\left(2^{12}\cdot5^2-2^{12}\right)}{5^8\left(2^{12}-2^{14}\right)}\)

\(=\frac{2^{12}\cdot5^2-2^{12}}{2^{12}-2^{14}}=\frac{2^{12}\left(5^2-1\right)}{2^{12}\left(1-2^2\right)}=\frac{24}{-3}=-8\)

3 tháng 7 2018

\(\sqrt{3\cdot27}-\sqrt{\dfrac{144}{36}}\)=\(\sqrt{81}-\sqrt{4}\)=9-2=7

\(\dfrac{2\cdot3+3\cdot6}{4}\)=6

\(\sqrt{7}-\sqrt{7-2\cdot\sqrt{7}+1}\)=\(\sqrt{7}-\left(\sqrt{7}-1\right)\)=1

\(\dfrac{\sqrt{3-2\cdot\sqrt{3}+1}}{\sqrt{2}\cdot\left(\sqrt{3}-1\right)}\)=\(\dfrac{\sqrt{3}-1}{\sqrt{2}\cdot\left(\sqrt{3}-1\right)}\)=\(\dfrac{1}{\sqrt{2}}\)

\(\dfrac{\sqrt{5}\cdot\left(\sqrt{5}+3\right)}{\sqrt{5}}\)+\(\dfrac{\sqrt{3}\cdot\left(1+\sqrt{3}\right)}{\sqrt{3}+1}\)-(\(\sqrt{5}+3\))

=(\(\sqrt{5}+3\))+\(\sqrt{3}\)-(\(\sqrt{5}+3\))=\(\sqrt{3}\)

\(\sqrt{3}\cdot\sqrt{9}+5\cdot\sqrt{4}\cdot3-2\sqrt{3}\)

=\(\sqrt{3}\cdot\left(3+10-2\right)\)

=\(11\sqrt{3}\)

8 tháng 8 2019

b,

+ Với \(x=0\) \(\Rightarrow PTVN\)

+ Với \(x\ne0\), chia cả 2 vế cho \(x^2\) :

\(PT\Leftrightarrow x^2-16x+46+\frac{144}{x}+\frac{81}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\frac{81}{x^2}\right)-16\left(x-\frac{9}{x}\right)+46=0\)

Đặt \(x-\frac{9}{x}=t\Rightarrow t^2=x^2+\frac{81}{x^2}-18\)

\(\Leftrightarrow t^2+18-16t+46=0\)

\(\Leftrightarrow t^2-16t+64=0\Rightarrow t=8\)

\(\Leftrightarrow x-\frac{9}{x}=8\Leftrightarrow x^2-8x-9=0\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=9\end{matrix}\right.\) (t/m)

9 tháng 8 2019

cậu xem làm được mấy bài kia không làm giùm với (đang gấp) :))

27 tháng 9 2019

a) \(\sqrt{3+\sqrt{5}}\)\(-\sqrt{3-\sqrt{5}}\)\(=\frac{\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}\)\(=\frac{\left|\sqrt{5}+1\right|-\left|\sqrt{5}-1\right|}{\sqrt{2}}\)\(=\)\(\frac{\sqrt{5}+1-\sqrt{5}+1}{\sqrt{2}}\)\(=\frac{2}{\sqrt{2}}=\sqrt{2}\)

16 tháng 8 2017

Với n thuộc N ta luôn có :

\(\frac{\sqrt{n}-\sqrt{n+1}}{\sqrt{n\left(n+1\right)}}=\frac{\sqrt{n}}{\sqrt{n\left(n+1\right)}}-\frac{\sqrt{n+1}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n+1}}-\frac{1}{\sqrt{n}}\)

Áp dụng ta được 

\(\frac{1-\sqrt{2}}{\sqrt{2}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{6}}+\frac{\sqrt{3}-\sqrt{4}}{\sqrt{12}}+....+\frac{\sqrt{99}-\sqrt{100}}{\sqrt{9900}}\)

\(\frac{\sqrt{1}-\sqrt{2}}{\sqrt{1.2}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2.3}}+\frac{\sqrt{3}-\sqrt{4}}{\sqrt{3.4}}+....+\frac{\sqrt{99}-\sqrt{100}}{\sqrt{99.100}}\)

\(\frac{1}{\sqrt{2}}-1+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{4}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{100}}-\frac{1}{\sqrt{99}}\)

\(=\frac{1}{\sqrt{100}}-1=\frac{1}{10}-1=-\frac{9}{10}\)

8 tháng 1 2018

Đề ở mẫu thứ 3 là \(\sqrt{xz}+12\sqrt{z}+12\) mới đúng

Ta có: \(\sqrt{xyz}=12\)

\(\Rightarrow P=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+\sqrt{xyz}}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{xyz}.\sqrt{z}}{\sqrt{xz}+\sqrt{xyz}.\sqrt{x}+\sqrt{xyz}}\)\(=\dfrac{1}{\sqrt{y}+1+\sqrt{yz}}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{yz}}{1+\sqrt{y}+\sqrt{yz}}=1\)

9 tháng 1 2018

đậu xanh sửa thành z mak vẫn ghi x