Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\left(\sqrt{45}-\sqrt{20}+\sqrt{5}\right):\sqrt{6}\)
\(=\left(\sqrt{9.5}\sqrt{4.5}+\sqrt{5}\right).\frac{1}{\sqrt{6}}\)
\(=\frac{2\sqrt{5}}{\sqrt{6}}\)
\(=\frac{\sqrt{30}}{3}\)
1) \(\left(\sqrt{45}-\sqrt{20}+\sqrt{5}\right):\sqrt{6}\)
\(=\left(\sqrt{9.5}-\sqrt{4.5}+\sqrt{5}\right):\sqrt{6}\)
\(=\left(3\sqrt{5}-2\sqrt{5}+\sqrt{5}\right):\sqrt{6}\)
\(=\frac{2\sqrt{5}}{\sqrt{6}}\)
\(=\frac{2\sqrt{5}\sqrt{6}}{\sqrt{6}.\sqrt{6}}\)
\(=\frac{2\sqrt{30}}{6}\)
\(=\frac{\sqrt{30}}{3}\)
\(\sqrt{3\cdot27}-\sqrt{\dfrac{144}{36}}\)=\(\sqrt{81}-\sqrt{4}\)=9-2=7
\(\dfrac{2\cdot3+3\cdot6}{4}\)=6
\(\sqrt{7}-\sqrt{7-2\cdot\sqrt{7}+1}\)=\(\sqrt{7}-\left(\sqrt{7}-1\right)\)=1
\(\dfrac{\sqrt{3-2\cdot\sqrt{3}+1}}{\sqrt{2}\cdot\left(\sqrt{3}-1\right)}\)=\(\dfrac{\sqrt{3}-1}{\sqrt{2}\cdot\left(\sqrt{3}-1\right)}\)=\(\dfrac{1}{\sqrt{2}}\)
\(\dfrac{\sqrt{5}\cdot\left(\sqrt{5}+3\right)}{\sqrt{5}}\)+\(\dfrac{\sqrt{3}\cdot\left(1+\sqrt{3}\right)}{\sqrt{3}+1}\)-(\(\sqrt{5}+3\))
=(\(\sqrt{5}+3\))+\(\sqrt{3}\)-(\(\sqrt{5}+3\))=\(\sqrt{3}\)
\(\sqrt{3}\cdot\sqrt{9}+5\cdot\sqrt{4}\cdot3-2\sqrt{3}\)
=\(\sqrt{3}\cdot\left(3+10-2\right)\)
=\(11\sqrt{3}\)
b,
+ Với \(x=0\) \(\Rightarrow PTVN\)
+ Với \(x\ne0\), chia cả 2 vế cho \(x^2\) :
\(PT\Leftrightarrow x^2-16x+46+\frac{144}{x}+\frac{81}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\frac{81}{x^2}\right)-16\left(x-\frac{9}{x}\right)+46=0\)
Đặt \(x-\frac{9}{x}=t\Rightarrow t^2=x^2+\frac{81}{x^2}-18\)
\(\Leftrightarrow t^2+18-16t+46=0\)
\(\Leftrightarrow t^2-16t+64=0\Rightarrow t=8\)
\(\Leftrightarrow x-\frac{9}{x}=8\Leftrightarrow x^2-8x-9=0\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=9\end{matrix}\right.\) (t/m)
cậu xem làm được mấy bài kia không làm giùm với (đang gấp) :))
a) \(\sqrt{3+\sqrt{5}}\)\(-\sqrt{3-\sqrt{5}}\)\(=\frac{\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}\)\(=\frac{\left|\sqrt{5}+1\right|-\left|\sqrt{5}-1\right|}{\sqrt{2}}\)\(=\)\(\frac{\sqrt{5}+1-\sqrt{5}+1}{\sqrt{2}}\)\(=\frac{2}{\sqrt{2}}=\sqrt{2}\)
Với n thuộc N ta luôn có :
\(\frac{\sqrt{n}-\sqrt{n+1}}{\sqrt{n\left(n+1\right)}}=\frac{\sqrt{n}}{\sqrt{n\left(n+1\right)}}-\frac{\sqrt{n+1}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n+1}}-\frac{1}{\sqrt{n}}\)
Áp dụng ta được
\(\frac{1-\sqrt{2}}{\sqrt{2}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{6}}+\frac{\sqrt{3}-\sqrt{4}}{\sqrt{12}}+....+\frac{\sqrt{99}-\sqrt{100}}{\sqrt{9900}}\)
\(\frac{\sqrt{1}-\sqrt{2}}{\sqrt{1.2}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2.3}}+\frac{\sqrt{3}-\sqrt{4}}{\sqrt{3.4}}+....+\frac{\sqrt{99}-\sqrt{100}}{\sqrt{99.100}}\)
\(\frac{1}{\sqrt{2}}-1+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{4}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{100}}-\frac{1}{\sqrt{99}}\)
\(=\frac{1}{\sqrt{100}}-1=\frac{1}{10}-1=-\frac{9}{10}\)
a> \(\sqrt{25x}=35\)
⇔ \(5\sqrt{x}=35\)
⇔ \(\sqrt{x}=7\)
⇔ x=49
vậy x=49
b) \(4\sqrt{x}=\sqrt{48}\)
⇔ \(4\sqrt{x}=\sqrt{16}.\sqrt{3}\)
⇔ \(4\sqrt{x}=4\sqrt{3}\)
⇔ \(\sqrt{x}=\sqrt{3}\)
⇔ x=3
vậy x=3
\(\sqrt{144x}\le132\)
⇔ \(12\sqrt{x}\le132\)
⇔ \(\sqrt{x}\le11\)
⇔ x≤121
vậy x≤121
d \(3\sqrt{x}>\sqrt{10}\)
⇔ \(\sqrt{9x}>\sqrt{10}\)
⇔ 9x > 10
⇔ x > \(\dfrac{10}{9}\)
vậy x > \(\dfrac{10}{9}\)
a: \(A=\dfrac{1}{x-1}\cdot5\sqrt{3}\cdot\left|x-1\right|\cdot\sqrt{x-1}\)
\(=\dfrac{5\sqrt{3}}{x-1}\cdot\left(x-1\right)\cdot\sqrt{x-1}=5\sqrt{3}\cdot\sqrt{x-1}\)
b: \(B=10\sqrt{x}-3\cdot\dfrac{10\sqrt{x}}{3}-\dfrac{4}{x}\cdot\dfrac{x\sqrt{x}}{2}\)
\(=10\sqrt{x}-10\sqrt{x}-\dfrac{4\sqrt{x}}{2}=-2\sqrt{x}\)
c: \(C=x-4+\left|x-4\right|\)
=x-4+x-4
=2x-8
a)
\((\sqrt{3}-2\sqrt{12}+2\sqrt{4})(\sqrt{27}+\sqrt{144}-2\sqrt{16})\)
\(=(\sqrt{3}-4\sqrt{3}+4)(3\sqrt{3}+12-8)\)
\(=(-3\sqrt{3}+4)(3\sqrt{3}+4)=4^2-(3\sqrt{3})^2=16-27=-11\)
b)
\((2\sqrt{5}+2\sqrt{3})^2-4\sqrt{60}\)
\(=(2\sqrt{5})^2+2.2\sqrt{5}.2\sqrt{3}+(2\sqrt{3})^2-8\sqrt{15}\)
\(=32+8\sqrt{15}-8\sqrt{15}=32\)
c)
\(\sqrt{6}(3\sqrt{12}-4\sqrt{3}+\sqrt{48}-5\sqrt{6})\)
\(=3\sqrt{72}-4\sqrt{18}+\sqrt{6.48}-5.\sqrt{36}\)
\(=18\sqrt{2}-12\sqrt{2}+12\sqrt{2}-30=18\sqrt{2}-30\)
d)
\((\sqrt{2}-\sqrt{3})(\sqrt{6}+\sqrt{2})(\sqrt{2}+\sqrt{3})\)
\(=(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})(\sqrt{6}+\sqrt{2})\)
\(=(2-3)(\sqrt{6}+\sqrt{2})=-(\sqrt{6}+\sqrt{2})\)
e) Biểu thức bên trong căn lớn âm nên biểu căn bậc 2 không có nghĩa
f)
\((\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}).\frac{1}{\sqrt{3}+5}\)
\(=(\frac{2\sqrt{3}+15}{3-\sqrt{3}}+\frac{3}{\sqrt{3}-2}).\frac{1}{\sqrt{3}+5}\)
\(=\frac{2\sqrt{3}+15)(\sqrt{3}-2)+3(3-\sqrt{3})}{(3-\sqrt{3})(\sqrt{3}-2)}.\frac{1}{\sqrt{3}+5}\)
\(=\frac{-15+8\sqrt{3}}{(-9+5\sqrt{3})(\sqrt{3}+5)}=\frac{-15+8\sqrt{3}}{-30+16\sqrt{3}}=\frac{-15+8\sqrt{3}}{2(-15+8\sqrt{3})}=\frac{1}{2}\)
\(\text{ĐKXĐ: }x\ge0;x\ne\pm1\)
\(2\sqrt{144x+144}-3\sqrt{100x-100}=12\)
\(2\sqrt{144\left(x+1\right)}-3\sqrt{100\left(x-1\right)}=12\)
\(2\sqrt{144}.\sqrt{\left(x+1\right)}-3\sqrt{100}.\sqrt{x-1}=12\)
\(2.12\sqrt{x+1}-3.10\sqrt{x-1}=12\)
\(24\sqrt{x+1}-30\sqrt{x-1}=12\)
\(6.\left(4\sqrt{x+1}-5\sqrt{x-1}\right)=6.2\)
\(4\sqrt{x+1}-5\sqrt{x-1}=2\)
\(\text{Mk bí r}\)