K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2019

Ai giải hộ đi -_- mình xin các bạn

26 tháng 9 2019

các bạn nhanh lên

pls T.T

27 tháng 3 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: MN // BC (có cặp góc so le trong bằng nhau)

Vì AMBN là hình chữ nhật nên AB = MN

30 tháng 7 2020

30 o N B C M A 10

a. Trong tam giác vuông ABC, ta có :

\(AB=BC.\sin\widehat{C}=10.\sin30^o=10.\frac{1}{2}=5\left(cm\right)\)

\(AC=BC.\cos\widehat{C}=10.\cos30^o=10.\frac{\sqrt{3}}{2}=5\sqrt{3}\left(cm\right)\)

b)

Ta có : \(BM\perp BN\)( tính chất 2 góc kề bù ) \(\Rightarrow\widehat{MBN}=90^o\left(1\right)\)

         \(AM\perp BM\left(gt\right)\Rightarrow\widehat{AMB}=90^o\left(2\right)\)

         \(AN\perp BN\left(gt\right)\Rightarrow\widehat{ANB}=90^o\left(3\right)\)

Từ (1) (2) và (3) , suy ra : tứ giác AMBN là hình chữ nhật

\(\Rightarrow\Delta AMB=\Delta NBM\left(c.g.c\right)\)

\(\Rightarrow\widehat{ABM}=\widehat{NMB}\)

Mà \(\widehat{ABM}=\widehat{MBC}\left(gt\right)\)

\(\Rightarrow\widehat{NMB}=\widehat{NBC}\)

Suy ra: MN // BC (có cặp góc so le trong bằng nhau)

Vì AMBN là hình chữ nhật nên AB = MN

30 tháng 7 2020

)): gửi cả câu c) rồi mà cuối cùng lại 0 có , làm lại câu c) sang bên này :>

c) 

Tam giác ABC vuông tại A nên \(\widehat{B}+\widehat{C}=90^o\)

\(\Rightarrow\widehat{B}=90^o-\widehat{C}=90^o-30^o=60^o\)

\(\Rightarrow\widehat{ABM}=\frac{1}{2}\widehat{B}=\frac{1}{2}.60^o=30^o\)

Xét 2 tam giác ABC và MAB ,, ta có :

\(\widehat{BAC}=\widehat{AMB}=90^o\)

\(\widehat{ACB}=\widehat{ABM}=90^o\)

\(\Rightarrow\Delta ABC~\Delta MAB\left(g.g\right)\)

=> Tỉ số đồng dạnh \(k=\frac{AB}{BC}=\frac{5}{10}=\frac{1}{2}\)

25 tháng 5 2017

a, HS tự làm

b, Chú ý hai đường phân giác trong và ngoài tại một đỉnh vuông góc nhau

c, Chú ý BM là phân giác góc ABC. Từ đó tính được số đo các góc của tam giác MAB và suy ra ĐPCM

Chú ý Hai tam giác MAB và ABC đều là các tam giác nửa đều

Từ đó tính được tỉ số đồng dạng là 1/2

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0
23 tháng 10 2020

các bạn làm hộ mik câu c và câu d nhé

23 tháng 10 2020

con dog ngọc linh cặc