Tính \(\sqrt{A}\) biết
\(A=13-2\sqrt{42}\)
\(A=46+6\sqrt{5}\)
\(A=12-3\sqrt{15}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = \(13-2\sqrt{42}=\left(\sqrt{7}-\sqrt{6}\right)^2\)
<=> \(\sqrt{A}=\sqrt{7}-\sqrt{6}\)
b) \(A=46+6\sqrt{5}=\left(\sqrt{45}+1\right)^2\)
<=> \(\sqrt{A}=\sqrt{45}+1\)
c) \(A=12-3\sqrt{15}=\dfrac{1}{2}\left(24-6\sqrt{15}\right)=\dfrac{1}{2}\left(\sqrt{15}-3\right)^2\)
<=> \(\sqrt{A}=\dfrac{1}{\sqrt{2}}\left(\sqrt{15}-3\right)\)
\(\sqrt{13-2\sqrt{42}}=\sqrt{6-2\sqrt{6}.\sqrt{7}+7}=\sqrt{\left(\sqrt{6}-\sqrt{7}\right)^2}=\left|\sqrt{6}-\sqrt{7}\right|=\sqrt{7}-\sqrt{6}\)
\(\sqrt{46+6\sqrt{5}}=\sqrt{45+6\sqrt{5}+1}=\sqrt{3^2.5+6\sqrt{5}+1}=\sqrt{3^2.5+2.3.\sqrt{5}+1^2}=\sqrt{\left(3.\sqrt{5}+1\right)^2}=3\sqrt{5}+1\)
\(\sqrt{12-3\sqrt{15}}=\sqrt{3}\sqrt{4-\sqrt{15}}=\sqrt{\frac{3}{2}}.\sqrt{8-2\sqrt{15}}=\sqrt{\frac{3}{2}}.\sqrt{3-2\sqrt{15}+5}=\sqrt{\frac{3}{2}}.\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{\frac{3}{2}}.\left(\sqrt{5}-\sqrt{3}\right)\)
\(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=\sqrt{3-2\sqrt{15}+5}-\sqrt{8+2\sqrt{15}}=\sqrt{3-2\sqrt{3}\sqrt{5}+5}-\sqrt{3+2\sqrt{3}\sqrt{5}+5}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{5}-\sqrt{3}-\sqrt{3}-\sqrt{5}=-2\sqrt{3}\)
\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}=\sqrt{\frac{1}{2}}\left(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\right)=\sqrt{\frac{1}{2}}\left(\sqrt{1+2\sqrt{5}+5}-\sqrt{1-2\sqrt{5}+5}\right)=\sqrt{\frac{1}{2}}\left(\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\right)=\sqrt{\frac{1}{2}}\left(1+\sqrt{5}-\sqrt{5}+1\right)=\sqrt{\frac{1}{2}}.2=\sqrt{\frac{4}{2}}=\sqrt{2}\)
\(A=\sqrt{13+4\sqrt{10}}=\sqrt{13+2\sqrt{40}}=\sqrt{8+2.\sqrt{5}.\sqrt{8}+5}=\sqrt{\left(\sqrt{8}+\sqrt{5}\right)^2}=\sqrt{8}+\sqrt{5}\)
\(B=\sqrt{46-6\sqrt{5}}=\sqrt{46-2\sqrt{45}}=\sqrt{\left(\sqrt{45}-1\right)^2}=\sqrt{45}-1=3\sqrt{5}-1\)
\(C=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-\sqrt{7}}\)
\(C=-\sqrt{3}-\sqrt{2}+\dfrac{\sqrt{5}+\sqrt{3}}{2}-\dfrac{\sqrt{7}+\sqrt{5}}{2}\)
\(C=-\sqrt{3}-\sqrt{2}+\dfrac{\sqrt{3}-\sqrt{7}}{2}\)
\(C=\dfrac{-2\sqrt{3}-2\sqrt{2}+\sqrt{3}-\sqrt{7}}{2}=\dfrac{-\sqrt{3}-2\sqrt{2}-\sqrt{7}}{2}\)
Ta có: \(A=\dfrac{10\sqrt{6}-12}{\sqrt{6}-5}-3\sqrt{\dfrac{2}{3}}+\dfrac{15}{\sqrt{6}-1}\)
\(=\dfrac{-2\sqrt{6}\left(5-\sqrt{6}\right)}{5-\sqrt{6}}-\sqrt{\dfrac{2}{3}\cdot9}+\dfrac{15\left(\sqrt{6}+1\right)}{\left(\sqrt{6}-1\right)\left(\sqrt{6}+1\right)}\)
\(=-2\sqrt{6}-\sqrt{6}+3\left(\sqrt{6}+1\right)\)
\(=-3\sqrt{6}+3\sqrt{6}+3\)
=3
9: \(A=\dfrac{\sqrt{8+2\sqrt{15}}-\sqrt{14-6\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}+\sqrt{3}-3+\sqrt{5}}{\sqrt{2}}=\dfrac{2\sqrt{10}+\sqrt{6}-3\sqrt{2}}{2}\)
10: \(A=\dfrac{\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
11: \(A=\dfrac{\sqrt{24-6\sqrt{7}}-\sqrt{24+6\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}=-\dfrac{2\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)
12: \(B=\left(3+\sqrt{3}\right)\sqrt{12-6\sqrt{3}}\)
\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)\)
=9-3=6
13: \(A=\sqrt{5}-2-\left(3-\sqrt{5}\right)\)
\(=\sqrt{5}-2-3+\sqrt{5}=2\sqrt{5}-5\)
Bài 1:
a)
\(\sqrt{13-2\sqrt{42}}=\sqrt{6+7-2\sqrt{6.7}}=\sqrt{(\sqrt{7}-\sqrt{6})^2}=|\sqrt{7}-\sqrt{6}|=\sqrt{7}-\sqrt{6}\)
b)
\(\sqrt{46+6\sqrt{5}}=\sqrt{46+2\sqrt{45}}=\sqrt{45+1+2\sqrt{45.1}}=\sqrt{(\sqrt{45}+1)^2}=\sqrt{45}+1\)
\(=3\sqrt{5}+1\)
c)
\(\sqrt{12-3\sqrt{15}}=\sqrt{\frac{24-6\sqrt{15}}{2}}=\sqrt{\frac{24-2\sqrt{135}}{2}}=\sqrt{\frac{15+9-2\sqrt{15.9}}{2}}\)
\(=\sqrt{\frac{(\sqrt{15}-\sqrt{9})^2}{2}}=\frac{\sqrt{15}-\sqrt{9}}{\sqrt{2}}=\frac{\sqrt{15}-3}{\sqrt{2}}\)
d)
\(\sqrt{11+\sqrt{96}}=\sqrt{11+2\sqrt{24}}=\sqrt{8+3+2\sqrt{8.3}}\)
\(=\sqrt{(\sqrt{8}+\sqrt{3})^2}=\sqrt{8}+\sqrt{3}\)
Bài 1:
a)
\(\sqrt{13-2\sqrt{42}}=\sqrt{6+7-2\sqrt{6.7}}=\sqrt{(\sqrt{7}-\sqrt{6})^2}=|\sqrt{7}-\sqrt{6}|=\sqrt{7}-\sqrt{6}\)
b)
\(\sqrt{46+6\sqrt{5}}=\sqrt{46+2\sqrt{45}}=\sqrt{45+1+2\sqrt{45.1}}=\sqrt{(\sqrt{45}+1)^2}=\sqrt{45}+1\)
\(=3\sqrt{5}+1\)
c)
\(\sqrt{12-3\sqrt{15}}=\sqrt{\frac{24-6\sqrt{15}}{2}}=\sqrt{\frac{24-2\sqrt{135}}{2}}=\sqrt{\frac{15+9-2\sqrt{15.9}}{2}}\)
\(=\sqrt{\frac{(\sqrt{15}-\sqrt{9})^2}{2}}=\frac{\sqrt{15}-\sqrt{9}}{\sqrt{2}}=\frac{\sqrt{15}-3}{\sqrt{2}}\)
d)
\(\sqrt{11+\sqrt{96}}=\sqrt{11+2\sqrt{24}}=\sqrt{8+3+2\sqrt{8.3}}\)
\(=\sqrt{(\sqrt{8}+\sqrt{3})^2}=\sqrt{8}+\sqrt{3}\)
a: \(=\dfrac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}-3\sqrt{3}+\dfrac{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}\)
\(=\sqrt{3}-3\sqrt{3}+\sqrt{3}=-\sqrt{3}\)
b: \(=\left(\left(2-2\sqrt{5}\right)\left(\sqrt{5}+2\right)+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(2\sqrt{5}+4-10-4\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(-2\sqrt{5}+\sqrt{3}-6\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=-20+2\sqrt{15}+\sqrt{15}-3-6\sqrt{5}+6\sqrt{3}\)
\(=-23+3\sqrt{15}-6\sqrt{5}+6\sqrt{3}\)
A=13−2√42
=7-2\(\sqrt{6}.\sqrt{7}\)+6
=\(\left(\sqrt{7}-\sqrt{6}\right)^2\)
=>\(\sqrt{A}=\sqrt{7}-\sqrt{6}\)
A=46+6√5
=45+2.\(3\sqrt{5}\)+1
=(\(3\sqrt{5}+1\))2
=>\(\sqrt{A}=3\sqrt{5}+1\)