Giải hệ phương trình
56x=4y
x( z - 24 )= (y - x)( 80 - z)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{⋄}\)Xét xyz = 0 thì dễ có x = y = z = 0 (Nếu giả sử x = 0 thì 4y2(1 - x) = 0 hay y = 0 do đó 4z2(1 - y) = 0 suy ra z = 0, tương tự đối với y, z = 0)
\(\text{⋄}\)Xét \(xyz\ne0\)thì từ hệ suy ra \(xyz=64x^2y^2z^2\left(1-x\right)\left(1-y\right)\left(1-z\right)\Leftrightarrow64xyz\left(1-x\right)\left(1-y\right)\left(1-z\right)=1\)(*)
Dễ có: \(\left(2x-1\right)^2\ge0\Leftrightarrow4x\left(1-x\right)\le1\), tương tự: \(4y\left(1-y\right)\le1;4z\left(1-z\right)\le1\)suy ra \(64xyz\left(1-x\right)\left(1-y\right)\left(1-z\right)\le1\)
Như vậy điều kiện để (*) xảy ra là \(x=y=z=\frac{1}{2}\)
Vậy hệ có 2 nghiệm \(\left(x,y,z\right)\in\left\{\left(0;0;0\right),\left(\frac{1}{2};\frac{1}{2};\frac{1}{2}\right)\right\}\)
Đưa hệ phương trình về hệ dạng tam giác bằng cách khử dần ẩn số.
Nhân phương trình (1) với 2 rồi cộng với phương trình (2) và nhân phương trình (1) với (3) rồi trừ đi phương trình (3) ta được:
Giải hệ phương trình trên ta được
Vậy hệ phương trình có nghiệm
Đưa hệ phương trình về dạng hệ tam giác bằng cách khử dần các ẩn.
Nhân phương trình (2) với 2 rồi cộng với phương trình (1) và cộng phương trình (2) với phương trình (3) ta được:
Giải hệ phương trình trên ta được
Vậy hệ phương trình có nghiệm
áp dụng bđt \(\frac{a+b}{2}\ge\sqrt{ab}\),dấu "=" xảy ra <=>a=b
\(\sqrt{\left(4x-1\right).1}\le\frac{1+4x-1}{2}=2x\)
Tương tự \(\sqrt{\left(4y-1\right).1}\le\frac{1+4y-1}{2}=2y;\sqrt{\left(4z-1\right).1}\le\frac{1+4z-1}{2}=2z\)
Cộng theo vế:
=>\(2\left(x+y+z\right)\ge\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\sqrt{4x-1}=1\\\sqrt{4y-1}=1\\\sqrt{4z-1}=1\end{cases}}< =>x=y=z=\frac{1}{2}\)
5xyz=24(x+y)(1) |
7xyz=24(y+z)(2) |
xyz=4(x+z) => 2xyz= 8(x+z) (3) Trừ vế theo vế (1),(1),(3) ta được: 7xyz - 5xyz - 2xyz = 24(y+z) - 24(x+y) - 8(x+z) 0 = 16z - 32x => 0 = z - 2x => z=2x Thay z=2x vào (3) ta đươc: 4x^2y = 24x =>xy=6 Thay xy=6; z=2x vào (1) ta được: 5xyz = 24(x+y) <=> 30z= 12z + 24y <=>3z=4y Mà z=2x => 4y=6x <=> 2y=3x Thay 2y=3x vào xy=6 ta được xy=6=> 2xy= 12 <=> 3x^2=12 => x^2=4 => x=(2;-2) +) Với x=2 => y= 3, z= 4 +) Với x=-2 => y= -3, z= -4 Vậy x,y,z= (2,3,4): (-2,-3,-4) |