K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2019

Câu này bạn đăng hôm qua rồi còn gì nữa? Trần Thị Ngọc Diệp

4 tháng 7 2017

Bạn có hình vẽ ko

26 tháng 4 2020

Vì AD là phân giác BAC => DAC = DAB = BAC : 2 hay 2DAC = 2DAB = BAC

Vì CE là phân giác BCA => BCE = ECA = BCA : 2 hay 2BCE = 2ECA = BCA

Xét △ABC vuông tại B có: BAC + BCA = 90o (2 góc nhọn trong △ vuông)

=> 2DAC + 2ECA = 90o  => DAC + ECA = 45o

Xét △ICA có: ICA + IAC + CIA = 180o (tổng 3 góc trong tam giác)

=> 45o + CIA = 180o  => CIA = 135o

b, Xét △ABC có BCx là góc ngoài của △ tại đỉnh C, ta có: BCx = CBA + BAC => BCx = 90o + BAC

Vì CK là phân giác BCx \(\Rightarrow\frac{\widehat{BCx}}{2}=\frac{90^o+\widehat{BAC}}{2}\)\(\Rightarrow\widehat{BCK}=45^o+\widehat{DAC}\)

Xét △KCA có: CKA + KCA + CAK = 180o (tổng 3 góc trong △)

=> CKA + KCD + DCI + ICA + CAK = 180o

=> CKA + 45o + DAC + DCI + ICA + CAK = 180o

=> CKA + (DAC + ICA) + (DCI + CAK) = 135o

=> CKA + 45o + 45o = 135o

=> CKA = 45o

21 tháng 10 2023

a: ΔBAC vuông tại B

=>\(\widehat{BAC}+\widehat{BCA}=90^0\)

=>\(2\left(\widehat{IAC}+\widehat{ICA}\right)=90^0\)

=>\(\widehat{IAC}+\widehat{ICA}=45^0\)

Xét ΔIAC có \(\widehat{IAC}+\widehat{ICA}+\widehat{CIA}=180^0\)

=>\(\widehat{CIA}=180^0-45^0=135^0\)

b: CI và CK là hai tia phân giác của hai góc kề bù

=>\(\widehat{ICK}=90^0\)

\(\widehat{CIK}+\widehat{CIA}=180^0\)

=>\(\widehat{CIK}=45^0\)

Xét ΔCKI vuông tại C có \(\widehat{CIK}=45^0\)

nên ΔCKI vuông cân tại C

=>\(\widehat{CKI}=\widehat{CKA}=45^0\)

24 tháng 11 2023

a: 

Xét ΔABC có góc OAC là góc ngoài tại đỉnh A

nên \(\widehat{OAC}+\widehat{BAC}=180^0\)

=>\(\widehat{OAC}=180^0-80^0=100^0\)

At là phân giác của góc OAC

=>\(\widehat{tAO}=\widehat{tAC}=\dfrac{\widehat{OAC}}{2}=\dfrac{100^0}{2}=50^0\)

\(\widehat{tAO}=\widehat{CBA}\)(=50 độ)

mà hai góc này là hai góc ở vị trí đồng vị

nên At//BC

\(\widehat{xOA}=\widehat{ABC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ox//BC

 

b: 

Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)

=>\(\widehat{ACB}+80^0+50^0=180^0\)

=>\(\widehat{ACB}=50^0\)