K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2019

S=4+22+23+...+298=22+22+23+...+298=2.22+23+..+298=23+23+...+298=299

Ta thấy 299 không phải là số chính phương => S cũng không phải là số chính phương (đpcm)

NV
13 tháng 12 2020

1.

\(2x+1\ge0\Rightarrow x\ge-\dfrac{1}{2}\)

Khi đó pt đã cho tương đương:

\(x^2+2x+2m=\left(2x+1\right)^2\)

\(\Leftrightarrow x^2+2x+2m=4x^2+4x+1\)

\(\Leftrightarrow3x^2+2x+1=2m\)

Xét hàm \(f\left(x\right)=3x^2+2x+1\) trên \([-\dfrac{1}{2};+\infty)\)

\(-\dfrac{b}{2a}=-\dfrac{1}{3}< -\dfrac{1}{2}\)

\(f\left(-\dfrac{1}{2}\right)=\dfrac{3}{4}\) ; \(f\left(\dfrac{1}{3}\right)=\dfrac{2}{3}\)

\(\Rightarrow\) Pt đã cho có 2 nghiệm pb khi và chỉ khi \(\dfrac{2}{3}< 2m\le\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{1}{3}< m\le\dfrac{3}{8}\)

\(\Rightarrow P=\dfrac{1}{8}\)

NV
13 tháng 12 2020

3.

Đặt \(x^2=t\ge0\Rightarrow\left[{}\begin{matrix}x=\sqrt{t}\\x=-\sqrt{t}\end{matrix}\right.\)

Pt trở thành: \(t^2-3mt+m^2+1=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=9m^2-4\left(m^2+1\right)>0\\t_1+t_2=3m>0\\t_1t_2=m^2+1>0\end{matrix}\right.\) \(\Rightarrow m>\dfrac{2}{\sqrt{5}}\)

Ta có:

\(M=x_1+x_2+x_3+x_4+x_1x_2x_3x_4\)

\(=-\sqrt{t_1}-\sqrt{t_2}+\sqrt{t_1}+\sqrt{t_2}+\left(-\sqrt{t_1}\right)\left(-\sqrt{t_2}\right)\sqrt{t_1}.\sqrt{t_2}\)

\(=t_1t_2=m^2+1\) với \(m>\dfrac{2}{\sqrt{5}}\)

9 tháng 10 2016

mình tính ra tổng S có tận cùng là 1 và 6 có đúng k ? nếu đúng thì kết luận như thế nào?

7 tháng 10 2016

(3^101-1) /2

6 tháng 11 2019

a) co

b) ko 

~~~HOC_TOT~~~

6 tháng 11 2019

a) Từ 1; 3; 3^2 ; ...; 3^98 có 99 số hạng có thể ghép thành 33 cặp mỗi cặp gồm 3 chữ số như sau:

\(1+3+3^2+3^3+...+3^{98}\)

\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)

\(=\left(1+3+9\right)+3^3\left(1+3+9\right)+...+3^{97}\left(1+3+9\right)\)

\(=13+3^3.13+...+3^{97}.13\)

\(=13\left(1+3^3+...+3^{97}\right)⋮13\)

b) Tính tổng:

Đặt: \(A=1+3+3^2+3^3+...+3^{98}\)

=> \(3A=3+3^2+3^3+...+3^{98}+3^{99}\)

=> \(3A-A=3^{99}-1\)

=> \(2A=3^{99}-1\)

=> \(A=\frac{3^{99}-1}{2}\)

Có: \(3^{99}=3^{98}.3=9^{49}.3\)có chữ số tận cùng là  7 

=> \(3^{99}-1\) có chữ số tận cùng là 6

=> A có chữ số tận cùng là 3 

=> A không là số chính phương.

6 tháng 10 2016

không là số chính phương

6 tháng 10 2016

bạn giải ra giúp mình với

16 tháng 12 2018

Có : 2A = 23 + 24 + 25 + .... + 22019

=> 2A - A = 22019 - 22

=> A = 22019 - 4

=> A + 4 = 22019 ko phải là số chính phương

Vậy ...........

Tham khảo nak

16 tháng 12 2018

Có : \(A=2^2+2^3+2^4+...+2^{2018}\)

\(\Rightarrow2A=2^3+2^4+2^5+...+2^{2019}\)

\(\Rightarrow2A-A=2^3+...+2^{2019}-2^2-2^3-...-2^{2018}\)

\(\Rightarrow A=2^{2019}-2^2\)

\(\Rightarrow A=2^{2019}-4\)

\(\Rightarrow A+4=2^{2019}\)ko phải là scp

Vậy ..............