Cho xy + x + y = 3
yz + y = z = 8
xz + x + z = 15 Tính P= x + y +z ( x; y; z >0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo:
cho x,y,z >0 thỏa mãn \(2\sqrt{y}+\sqrt{z}=\dfrac{1}{\sqrt{x}}\). CMR: \(\dfrac{3yz}{x}+\dfrac{4zx}{y}+\dfrac{5xy}{z}\ge... - Hoc24
\(A=3yz+\left(4-y-z\right)\left(y+2z\right)\)
\(A=-y^2+4y-2z^2+8z\)
\(A=-\left(y-2\right)^2-2\left(z-2\right)^2+12\le12\)
\(A_{max}=12\) khi \(\left(x;y;z\right)=\left(0;2;2\right)\)
\(\left(x+y+z\right)^3-3xy-3yz-3xz\)
\(=x^3+y^3+z^3+3xyz\left(xy+yz+xz\right)-3\left(xy+yz+xz\right)\)
\(=x^3+y^3+z^3+3\left(xy+yz+xz\right)\left(xyz-1\right)\)
-Ta có:
xy + x + y = 3 ( x + 1 )( y + 1 ) = 4
yz + y + z = 8 <=> ( y + 1 )( z + 1 ) = 9 (1)
xz +x + z = 15 ( z + 1)( x + 1 ) = 16
Nhân cả 3 vế với nhau, ta được:
\(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)^2\right]\) = 4.9.16
=> (x+1)(y+1)(z+1) = \(\pm24\)
-TH1: Xét (x+1)(y+1)(z+1) = 24 (2)
Từ (1) và (2) suy ra:
=> z+1 = 6 x = \(\frac{5}{3}\)
x+1=\(\frac{8}{3}\) <=> y = \(\frac{1}{2}\)
y+1 = \(\frac{3}{2}\) z = 5
Do đó P = x+y+z = \(\frac{5}{3}+\frac{1}{2}+5=\frac{43}{6}\)
-TH2: Xét (x+1)(y+1)(z+1) = -24 (3)
Từ (1) và (3) suy ra:
=> z + 1 = -6 z = -7
x + 1 = \(\frac{-8}{3}\) <=> x = \(\frac{-11}{3}\)
y + 1 = \(-\frac{3}{2}\) y = \(\frac{-5}{2}\)
Do đó P = x+y+z =\(-7+\left(-\frac{11}{3}\right)+\left(-\frac{5}{2}\right)=-\frac{79}{6}\)