K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2020

Gọi AD, BE, CF là ba đường cao của tam giác ABC cắt nhau tại H

1. Theo định lý Pythagoras, ta có: \(AB^2+HC^2=\left(AD^2+DB^2\right)+\left(HD^2+DC^2\right)=\left(AD^2+DC^2\right)+\left(DB^2+HD^2\right)=AC^2+HB^2\)(1)

\(BC^2+HA^2=\left(BE^2+EC^2\right)+\left(AE^2+HE^2\right)=\left(BE^2+AE^2\right)+\left(EC^2+HE^2\right)=AB^2+HC^2\)(2)

Từ (1) và (2) suy ra \(AB^2+HC^2=AC^2+HB^2=BC^2+HA^2\)(đpcm)

2. Ta có: \(BC.HA=BC.AD-BC.HD=2S-2S_{BHC}\)

Tương tự: \(AB.HC=2S-2S_{AHB}\)\(CA.HB=2S-2S_{AHC}\)

Suy ra \(AB.HC+BC.HA+CA.HB=6S-2S=4S\)(đpcm)

9 tháng 8 2019

giải giúp mk câu b) thôi

9 tháng 8 2019

A B C D E F H

a) Áp dụng định lí pitago.

Ta có: \(AB^2=AD^2+BD^2=BE^2+AE^2\)

\(HC^2=HD^2+DC^2=HE^2+EC^2\)

=> \(AB^2+HC^2=AD^2+BD^2+HD^2+DC^2\)

\(=\left(AD^2+DC^2\right)+\left(BD^2+HD^2\right)=AC^2+BH^2\) (1)

và \(AB^2+HC^2=BE^2+AE^2+HE^2+EC^2\)

\(=\left(BE^2+EC^2\right)+\left(AE^2+HE^2\right)=BC^2+AH^2\)(2)

Từ (1) , (2) Ta có: \(AB^2+HC^2=AC^2+HB^2=BC^2+HA^2\)

b) Ta có: \(S_{AHB}+S_{AHC}+S_{BHC}=S_{ABC}=S\)

\(AB.HC=AB\left(CF-FH\right)=AB.CF-AB.FH\)

\(=2S_{ABC}-2S_{AHB}=2S-2S_{ABH}\)

Tương tự: \(BC.HA=2S-2S_{BHC}\)

                 \(CA.HB=2S-2S_{AHC}\)

Cộng lại ta có:

\(AB.HC+BC.AH+CA.HB=6S-2\left(S_{AHB}+S_{AHC}+S_{BHC}\right)\)

\(=6S-2S=4S\)(đpcm)

20 tháng 2 2016

nói thật chứ bài nay tui lop 7 lam dc

28 tháng 3 2016

ban giup mk giai bai tren dc k mk dang can 

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng với ΔAEC

b: Xet ΔHEB vuôg tại E và ΔHDC vuông tại D có

góc EHB=góc DHC
=>ΔHEB đồng dạng với ΔHDC

=>HE/HD=HB/HC

=>HE*HC=HB*HD

c: ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC

=>góc ADE=góc ABC

16 tháng 3 2023

Cảm ơn ban rất nhiều

4 tháng 4 2021

undefined

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15(cm)

Vậy: BC=15cm