K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 9 2019

ĐKXĐ: \(x\ge2020\)

- Với \(x=2020\Rightarrow A=\frac{1}{2022}\)

- Với \(x>2020\)

\(A=\frac{\sqrt{x-2019}}{x-2019+2021}+\frac{\sqrt{x-2020}}{x-2020+2020}\)

\(A=\frac{1}{\sqrt{x-2019}+\frac{2021}{\sqrt{x-2019}}}+\frac{1}{\sqrt{x-2020}+\frac{2020}{\sqrt{x-2020}}}\)

\(A\le\frac{1}{2\sqrt{2021}}+\frac{1}{2\sqrt{2020}}\)

So sánh với \(\frac{1}{2022}\Rightarrow A_{max}=\frac{1}{2\sqrt{2019}}+\frac{1}{2\sqrt{2020}}\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}x-2019=2021\\x-2020=2020\end{matrix}\right.\) \(\Rightarrow x=4040\)

3 tháng 11 2018

\(\frac{1}{\sqrt{x+1}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+3}}+...+\frac{1}{\sqrt{x+2019}+\sqrt{x+2020}}=11\)

\(\Leftrightarrow\)\(\frac{\sqrt{x+2}-\sqrt{x+1}}{\left(\sqrt{x+1}+\sqrt{x+2}\right)\left(\sqrt{x+2}-\sqrt{x+1}\right)}+\frac{\sqrt{x+3}-\sqrt{x+2}}{\left(\sqrt{x+2}+\sqrt{x+3}\right)\left(\sqrt{x+3}-\sqrt{x+2}\right)}\)

\(+...+\frac{\sqrt{x+2020}-\sqrt{x+2019}}{\left(\sqrt{x+2019}+\sqrt{x+2020}\right)\left(\sqrt{x+2020}-\sqrt{x+2019}\right)}=11\)

\(\Leftrightarrow\)\(\frac{\sqrt{x+2}-\sqrt{x+1}}{x+2-x-1}+\frac{\sqrt{x+3}-\sqrt{x+2}}{x+3-x-2}+...+\frac{\sqrt{x+2020}-\sqrt{x+2019}}{x+2020-x-2019}=11\)

\(\Leftrightarrow\)\(\sqrt{x+2}-\sqrt{x+1}+\sqrt{x+3}-\sqrt{x+2}+...+\sqrt{x+2020}-\sqrt{x+2019}=11\)

\(\Leftrightarrow\)\(\sqrt{x+2020}-\sqrt{x+1}=11\)

\(\Leftrightarrow\)\(\sqrt{x+2020}=11+\sqrt{x+1}\)

\(\Leftrightarrow\)\(x+2020=121+22\sqrt{x+1}+x+1\)

\(\Leftrightarrow\)\(22\sqrt{x+1}=1898\)

\(\Leftrightarrow\)\(\sqrt{x+1}=\frac{949}{11}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+1=\frac{900601}{121}\\x+1=\frac{-900601}{121}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{900480}{121}\\x=\frac{-900722}{121}\end{cases}}\)

Chúc bạn học tốt ~ 

PS : sai thì thui nhá 

3 tháng 11 2018

Bài của bạn Quân làm đúng ùi nhưng mà căn thì không ra số âm nhé!

19 tháng 12 2019
https://i.imgur.com/jd3dWdi.jpg
10 tháng 6 2020

x,y,z trong căn mak bạn nên : x = 2022, y = 2023, z = 2024 chứ nhò

25 tháng 6 2020

Đặt P = ...

Ta có: \(P=\sum\sqrt{x+\frac{yz}{x+y+z}}=\sum\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x+y+z}}=\frac{\sum\sqrt{\left(x+y\right)\left(x+z\right)}}{\sqrt{2020}}\)

\(\le\frac{\sum\left(x+y+x+z\right)}{2\sqrt{2020}}=\frac{4.\left(x+y+z\right)}{2\sqrt{2020}}=2\sqrt{2020}=4\sqrt{505}\)

Dấu "=" xảy ra khi và chỉ khi x = y = z = 2020/3

23 tháng 10 2019

TXĐ: \(D=\left(-1;1\right)\)

\(B=\frac{2018x+2019\sqrt{1-x^2}+2020}{\sqrt{1-x^2}}\)

\(=\frac{2018x+2020}{\sqrt{1-x^2}}+2019\)

Đặt  \(A=\frac{2018x+2020}{\sqrt{1-x^2}}>0\)vì \(-1< x< 1\)

=> \(\sqrt{1-x^2}.A=2018x+2020\)

=> \(\left(1-x^2\right)A^2=2018^2x^2+2.2018.2020x+2020^2\)

<=> \(\left(2018^2+A^2\right)x^2+2.2018.2020x+2020^2-A^2=0\)

pt trên có nghiệm <=> \(\Delta\ge0\)<=> \(\left(2018.2020\right)^2-\left(2018^2+A^2\right).\left(2020^2-A^2\right)\ge0\)

<=> \(A^4-\left(2020^2-2018^2\right)A^2\ge0\)

<=> \(A^2-8076\ge0\)

<=> \(A\ge\sqrt{8076}\)

"=" xảy ra <=> \(x=-\frac{1009}{1010}\left(tm\right)\)

Vậy GTNN của B = \(\sqrt{8076}+2019\) đạt tại  \(x=-\frac{1009}{1010}\)