Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge2020\)
- Với \(x=2020\Rightarrow A=\frac{1}{2022}\)
- Với \(x>2020\)
\(A=\frac{\sqrt{x-2019}}{x-2019+2021}+\frac{\sqrt{x-2020}}{x-2020+2020}\)
\(A=\frac{1}{\sqrt{x-2019}+\frac{2021}{\sqrt{x-2019}}}+\frac{1}{\sqrt{x-2020}+\frac{2020}{\sqrt{x-2020}}}\)
\(A\le\frac{1}{2\sqrt{2021}}+\frac{1}{2\sqrt{2020}}\)
So sánh với \(\frac{1}{2022}\Rightarrow A_{max}=\frac{1}{2\sqrt{2019}}+\frac{1}{2\sqrt{2020}}\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x-2019=2021\\x-2020=2020\end{matrix}\right.\) \(\Rightarrow x=4040\)
Thay 2020=x+y+z vao mẫu đc
\(\frac{xy}{\sqrt{xy+zx+zy+z^2}}=\frac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\frac{xy}{2}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)(Cauchy)
Làm tương tự mấy cái kia sau đó ghép mấy cái cũng mẫu lại là ra
ĐKXĐ: \(x\ge\dfrac{2020}{2019}>0\)
\(\Leftrightarrow\sqrt{2020x-2019}+\sqrt{2019x-2020}+2019\left(x+1\right)=0\)
\(\Leftrightarrow\dfrac{x+1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\left(x+1\right)=0\)
Do \(x>0\) nên hiển nhiên vế trái dương.
Pt vô nghiệm
ĐKXĐ: x≥20202019>0x≥20202019>0
⇔√2020x−2019+√2019x−2020+2019(x+1)=0⇔2020x−2019+2019x−2020+2019(x+1)=0
⇔x+1√2020x−2019+√2019x−2020+2019(x+1)=0⇔x+12020x−2019+2019x−2020+2019(x+1)=0
Do x>0x>0 nên hiển nhiên vế trái dương.
Pt vô nghiệm
Đặt P = ...
Ta có: \(P=\sum\sqrt{x+\frac{yz}{x+y+z}}=\sum\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x+y+z}}=\frac{\sum\sqrt{\left(x+y\right)\left(x+z\right)}}{\sqrt{2020}}\)
\(\le\frac{\sum\left(x+y+x+z\right)}{2\sqrt{2020}}=\frac{4.\left(x+y+z\right)}{2\sqrt{2020}}=2\sqrt{2020}=4\sqrt{505}\)
Dấu "=" xảy ra khi và chỉ khi x = y = z = 2020/3
với \(x\ge\frac{2020}{2019}\)
có \(\sqrt{2020x-2019}+2019\left(x+1\right)-\sqrt{2019x-20120}\)\(=0\)
\(\Leftrightarrow\sqrt{2020x-2019}-\sqrt{2019x-2020}=-2019\left(x+1\right)\)
\(\Leftrightarrow2020x-2019-\left(2019x-2020\right)=-2019\left(x+1\right)\left(\sqrt{2020x-2019}+\sqrt{2019x-2020}\right)\)
\(\Leftrightarrow\left(x+1\right)+2019\left(x+1\right)\left(\sqrt{2020x-2019}+\sqrt{2019x-2020}\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[1+2019\left(\sqrt{2020x-2019}+\sqrt{2019x-2020}\right)\right]=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)(không thỏa mãn)
vậy phương trình vô nghiệm