K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2019

Ta co:

\(1=a+b+c\ge3\sqrt[3]{abc}\Rightarrow abc\le\frac{1}{27}\)

Dat \(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{3}{\sqrt[3]{a^2b^2c^2}}\ge\frac{3}{\frac{1}{9}}=27\)

Dau '=' xay ra khi \(a=b=c=\frac{1}{3}\)

Vay \(P_{min}=27\)khi \(a=b=c=\frac{1}{3}\)

14 tháng 9 2019

còn cách khác k bạn

19 tháng 7 2021

\(P=\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}+2-2=\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-2\)

\(=\left(\frac{a^2}{b^3}+\frac{1}{a}+\frac{1}{a}\right)+\left(\frac{b^2}{c^3}+\frac{1}{b}+\frac{1}{b}\right)+\left(\frac{c^2}{a^3}+\frac{1}{c}+\frac{1}{c}\right)-2\)

Áp dụng BĐT AM-GM cho 3 số dương: 

\(\frac{a^2}{b^3}+\frac{1}{a}+\frac{1}{a}\ge3\sqrt[3]{\frac{a^2}{b^3}.\frac{1}{a}.\frac{1}{a}}=\frac{3}{b}\)

\(\frac{b^2}{c^3}+\frac{1}{b}+\frac{1}{b}\ge3\sqrt[3]{\frac{b^2}{c^3}.\frac{1}{b}.\frac{1}{b}}=\frac{3}{c}\)

\(\frac{c^2}{a^3}+\frac{1}{c}+\frac{1}{c}\ge3\sqrt[3]{\frac{c^2}{a^3}.\frac{1}{c}.\frac{1}{c}}=\frac{3}{a}\)

\(\Rightarrow P\ge\frac{3}{b}+\frac{3}{c}+\frac{3}{a}-2=3-2=1\)

Dấu "=" xảy ra khi \(a=b=c=3\)

19 tháng 7 2021

Đặt \(\frac{1}{a}=x,\frac{1}{b}=y,\frac{1}{c}=z\) thì

\(\Rightarrow\hept{\begin{cases}x+y+z=1\\P=\frac{y^3}{x^2}+\frac{z^3}{y^2}+\frac{x^3}{z^2}\end{cases}}\)

Ta có:

\(\frac{x^3}{z^2}+z+z\ge3x,\frac{y^3}{x^2}+x+x\ge3y,\frac{z^3}{y^2}+y+y\ge3z\)

\(\Rightarrow\frac{x^3}{z^2}\ge3x-2z,\frac{y^3}{x^2}\ge3y-2x,\frac{z^3}{y^2}\ge3z-2y\)

\(\Rightarrow P\ge3x-2z+3y-2x+3z-2y=x+y+z=1\)

8 tháng 8 2020

đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))

Sử dụng BĐT Svacxo ta có :

 \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)

bài làm của e : 

Áp dụng BĐT Svacxo ta có :

\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)

Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)

Tiếp tục sử dụng Svacxo thì ta được : 

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)

Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)

8 tháng 8 2020

Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:

https://olm.vn/hoi-dap/detail/259605114604.html

Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1

chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)

Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)

11 tháng 9 2019

1a

\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)

\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

Vay \(A_{min}=\frac{161}{16}\)

11 tháng 9 2019

1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)

\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)

2 tháng 1 2019

Ta có: \(\frac{a}{1+b^2}=\frac{a+ab^2-ab^2}{1+b^2}=\frac{a\left(1+b^2\right)}{1+b^2}-\frac{ab^2}{1+b^2}\)

                                                               \(=a-\frac{ab^2}{1+b^2}\)

Áp dụng bđt Cô-si ta có: \(1+b^2\ge2\sqrt{b^2}=2b\)

\(\Rightarrow\frac{ab^2}{1+b^2}\le\frac{ab^2}{2b}=\frac{ab}{2}\)

\(\Rightarrow a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\)

\(\Rightarrow\frac{a}{1+b^2}\ge a-\frac{ab}{2}\)

C/m tương tự \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\)

                     \(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

Cộng từng vế của 3 bđt trên lại ta đc

\(VT\ge a+b+c-\frac{ab+bc+ca}{2}=3-\frac{ab+bc+ca}{2}\)

Ta có bđt: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)(1) với x , y , z dương 

Thật vậy \(\left(1\right)\Leftrightarrow\left(x+y+z\right)^2\ge3xy+3yz+3zx\)

                      \(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2zx\ge3xy+3yz+3zx\)

                      \(\Leftrightarrow x^2+y^2+z^2-xy-yz-zx\ge0\)

                    \(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

                    \(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)(Luôn đúng)

Áp dụng bđt (1) ta đc \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)

Khi đó: \(VT\ge3-\frac{3}{2}=\frac{3}{2}\)

Dấu "=" <=> a = b = c = 1

Vậy .............

30 tháng 5 2019

Từ giả thiết và BĐT AM-GM suy ra:\(\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)\(\ge\)3

Ta có:

P\(\ge\)\(\frac{2a^3}{3\left(a^2+b^2\right)}\)+\(\frac{2b^3}{3\left(c^2+b^2\right)}\)+\(\frac{2c^3}{3\left(a^2+c^2\right)}\)

=\(\frac{2}{3}\)(\(\frac{a\left(a^2+b^2\right)-ab^2}{\left(a^2+b^2\right)}\)+\(\frac{b\left(c^2+b^2\right)-bc^2}{\left(c^2+b^2\right)}\)+\(\frac{a\left(a^2+c^2\right)-ca^2}{\left(a^2+c^2\right)}\))

=\(\frac{2}{3}\)(a+b+c-\(\frac{ab^2}{\left(a^2+b^2\right)}\)-\(\frac{bc^2}{\left(c^2+b^2\right)}\)-\(\frac{ca^2}{\left(a^2+c^2\right)}\))

\(\ge\)\(\frac{2}{3}\)(a+b+c-\(\frac{a}{2}\)-\(\frac{b}{2}\)-\(\frac{c}{2}\))

=\(\frac{2}{3}\).\(\frac{a+b+c}{2}\)=\(\frac{a+b+c}{3}\)=\(\frac{\left(a+1\right)+\left(b+1\right)+\left(c+1\right)}{3}\)-1

\(\ge\)\(\frac{3\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}{3}\)-1\(\ge\)2

Vậy:MinP=2 khi a=b=c=2

30 tháng 5 2019

cách này dễ hiểu hơn nè :

Áp dụng BĐT : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

Ta có : \(1\ge\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)

\(\Leftrightarrow1\ge\frac{9}{a+b+c+3}\)\(\Leftrightarrow a+b+c+3\ge9\)\(\Leftrightarrow a+b+c\ge6\)

\(\frac{a^3}{a^2+ab+b^2}=\frac{a\left(a^2+ab+b^2\right)-ab^2-a^2b}{a^2+ab+b^2}=a-\frac{ab^2+a^2b}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3ab}=a-\frac{a+b}{3}\)

Tương tự : \(\frac{b^3}{b^2+bc+c^2}\ge b-\frac{b+c}{3}\)\(\frac{c^3}{c^2+ac+a^2}\ge c-\frac{a+c}{3}\)

Cộng cả 3 vế , ta được : \(P\ge a+b+c-\frac{2\left(a+b+c\right)}{3}=\frac{1}{3}\left(a+b+c\right)\ge\frac{1}{3}.6=2\)

Vậy GTNN của P là 2 \(\Leftrightarrow a=b=c=2\)

18 tháng 9 2018

\(a+b+c+ab+bc+ca=6abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

\(\Rightarrow\hept{\begin{cases}x+y+z+xy+yz+zx=6\\P=x^2+y^2+z^2\end{cases}}\)

\(6=x+y+z+xy+yz+zx\le x+y+z+\frac{\left(x+y+z\right)^2}{3}\)

\(\Leftrightarrow x+y+z\ge3\)

\(\Rightarrow P=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\ge\frac{9}{3}=3\)

Toán hóc búa nè cho mấy ckế thoải mái mà làm, ai làm đúng thì tui tick cho thật nhiều:Bài 1,cho a,b,c là các số dương . Tìm GTNN của :a,\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b};\)b,\(B=\frac{a}{b+c}+\frac{b+c}{a}+\frac{b}{a+c}+\frac{a+c}{b}+\frac{c}{a+b}+\frac{a+b}{c}\)Bài 2: a,cho các số dương x,y,z có tổng bằng 1. Tìm GTNN của:                            \(A=\frac{x+y}{xyz}\)         b, cho các số dương x,y,z,t có tổng bằng 2. Tìm...
Đọc tiếp

Toán hóc búa nè cho mấy ckế thoải mái mà làm, ai làm đúng thì tui tick cho thật nhiều:

Bài 1,cho a,b,c là các số dương . Tìm GTNN của :

a,\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b};\)

b,\(B=\frac{a}{b+c}+\frac{b+c}{a}+\frac{b}{a+c}+\frac{a+c}{b}+\frac{c}{a+b}+\frac{a+b}{c}\)

Bài 2: a,cho các số dương x,y,z có tổng bằng 1. Tìm GTNN của:

                            \(A=\frac{x+y}{xyz}\)

         b, cho các số dương x,y,z,t có tổng bằng 2. Tìm GTNN của 

                           \(B=\frac{\left(x+y+z\right)\left(x+y\right)}{xyzt}\)

Bài 3 : Tìm GTNN của \(A=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)biết rằng \(x,y,z\) là các số dương và \(x^2+y^2+z^2\le3\)

Bài 4:  a, Tìm GTLN của tích xy với x,y là các số dương, \(y\ge6\)và \(x+y=100\)

          b, Tìm GTLN của tích xyz với x,y,z là các số dương,\(z\ge6\)và \(x+y+z=100\)

2
18 tháng 7 2016

Bài 1:a,

A=a/b+c + b/a+c + c/a+b = a^2/ab+ac + b^2/ab+bc + c^2/ac+bc 

Áp dụng BĐT dạng Angel : A > hoặc = (a+b+c)^2/ab+ac+ab+bc+ac+bc=(a+b+c)^2/2(ab+bc+ca) > hoặc = 3(ab+bc+ca)/2(ab+bc+ca)=3/2 

b,làm tt câu a 

18 tháng 7 2016

câu 1 của bạn chính sác đấy

27 tháng 7 2020

\(\left(1+a^3\right)\left(1+b^3\right)\left(1+b^3\right)\ge\left(1+ab^2\right)^3\)

\(\Leftrightarrow\)\(\frac{1+a^3}{1+ab^2}\ge\frac{\left(1+ab^2\right)^2}{\left(1+b^3\right)^2}\)

\(\Rightarrow\)\(3P\ge\Sigma\frac{\left(1+ab^2\right)^2}{\left(1+b^3\right)^2}+2\Sigma\frac{1+a^3}{1+ab^2}\ge9\sqrt[9]{\frac{\Pi\left(1+ab^2\right)^2}{\Pi\left(1+a^3\right)^2}\left(\frac{\Pi\left(1+a^3\right)}{\Pi\left(1+ab^2\right)}\right)^2}=9\)

\(\Rightarrow\)\(P\ge3\)

dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

13 tháng 8 2020

+)\(\frac{3}{4}\ge a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow\frac{1}{8}\ge abc\)

+) \(P=8abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(32abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)-24abc\)

\(\ge4\sqrt[4]{\frac{32}{abc}}-24abc\ge4\sqrt[4]{\frac{32}{\frac{1}{8}}}-3=16-3=13\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{2}\)